

Preface to the SI Edition ix Preface x Digital Resource xii Acknowledgments XV Notation xvi

- Chapter Objectives 1
 - Prologue 1
- Brief History 3 1.1
- Introduction to Matrix Notation 1.2 4
- Role of the Computer 1.3 6
- General Steps of the Finite Element Method 1.4 7
- 1.5 Applications of the Finite Element Method 15
- Advantages of the Finite Element Method 1.6 21
- Computer Programs for the Finite Element Method 1.7 25 References 27

Problems 30

Introduction to the Stiffness (Displacement) Method 31

V

Chapter Objectives 31 Introduction 31

- 2.1 Definition of the Stiffness Matrix 32
- 2.2 Derivation of the Stiffness Matrix for a Spring Element 32
- Example of a Spring Assemblage 36 2.3
- 2.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method) 38
- 2.5 Boundary Conditions 40
- 2.6 Potential Energy Approach to Derive Spring Element Equations 55 Summary Equations 65 References 66 Problems 66

Development of Truss Equations 72

Chapter Objectives 72 Introduction 72

Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates 3.1 73

Contents

- **3.2** Selecting a Displacement Function in Step 2 of the Derivation of Stiffness Matrix for the One-Dimensional Bar Element 78
- 3.3 Transformation of Vectors in Two Dimensions 82
- 3.4 Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane 84
- **3.5** Computation of Stress for a Bar in the x y Plane 89
- 3.6 Solution of a Plane Truss 91
- 3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space 100
- 3.8 Use of Symmetry in Structures 109
- 3.9 Inclined, or Skewed, Supports 112
- 3.10 Potential Energy Approach to Derive Bar Element Equations 121
- **3.11** Comparison of Finite Element Solution to Exact Solution for Bar 132
- 3.12 Galerkin's Residual Method and Its Use to Derive the One-Dimensional Bar Element Equations 136

- **3.13** Other Residual Methods and Their Application to a One-Dimensional Bar Problem 139
- 3.14 Flowchart for Solution of Three-Dimensional Truss Problems 143
- 3.15 Computer Program Assisted Step-by-Step Solution for Truss Problem 144 Summary Equations 146 References 147 Problems 147

Development of Beam Equations 169

Chapter Objectives 169

Introduction 169

- 4.1 Beam Stiffness 170
- 4.2 Example of Assemblage of Beam Stiffness Matrices 180
- 4.3 Examples of Beam Analysis Using the Direct Stiffness Method 182
- 4.4 Distributed Loading 195
- 4.5 Comparison of the Finite Element Solution to the Exact Solution for a Beam 208
- 4.6 Beam Element with Nodal Hinge 214
- 4.7 Potential Energy Approach to Derive Beam Element Equations 222
- Galerkin's Method for Deriving Beam Element Equations 225
 Summary Equations 227
 References 228
 Problems 229

Frame and Grid Equations 239

- Chapter Objectives 239 Introduction 239
- 5.1 Two-Dimensional Arbitrarily Oriented Beam Element 239
- 5.2 Rigid Plane Frame Examples 243
- 5.3 Inclined or Skewed Supports—Frame Element 261
- 5.4 Grid Equations 262

- 5.5 Beam Element Arbitrarily Oriented in Space 280
- 5.6 Concept of Substructure Analysis 295
 Summary Equations 300
 References 302
 Problems 303

Development of the Plane Stress and Plane Strain Stiffness Equations 337

Chapter Objectives 337 Introduction 337

- 6.1 Basic Concepts of Plane Stress and Plane Strain 338
- 6.2 Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations 342
- 6.3 Treatment of Body and Surface Forces 357
- 6.4 Explicit Expression for the Constant-Strain Triangle Stiffness Matrix 362
- 6.5 Finite Element Solution of a Plane Stress Problem 363
- 6.6 Rectangular Plane Element (Bilinear Rectangle, Q4) 374

Summary Equations 379

References 384

Problems 384

Practical Considerations in Modeling; Interpreting Results; and Examples of Plane Stress/Strain Analysis 391

Chapter Objectives 391 Introduction 391

- 7.1 Finite Element Modeling 392
- 7.2 Equilibrium and Compatibility of Finite Element Results 405
- 7.3 Convergence of Solution and Mesh Refinement 408
- 7.4 Interpretation of Stresses 411
- 7.5 Flowchart for the Solution of Plane Stress/Strain Problems 413
- 7.6 Computer Program–Assisted Step-by-Step Solution, Other Models, and Results for Plane Stress/Strain Problems 414 References 420 Problems 421

Development of the Linear-Strain Triangle Equations 437

Chapter Objectives 437 Introduction 437

- 8.1 Derivation of the Linear-Strain Triangular Element Stiffness Matrix and Equations 437
- 8.2 Example LST Stiffness Determination 442
- 8.3 Comparison of Elements 444
 Summary Equations 447
 References 448
 Problems 448

Axisymmetric Elements 451

Chapter Objectives 451 Introduction 451

- 9.1 Derivation of the Stiffness Matrix 451
- 9.2 Solution of an Axisymmetric Pressure Vessel 462
- 9.3 Applications of Axisymmetric Elements 468

Summary Equations 473

References 475

Problems 475

Isoparametric Formulation 486

Chapter Objectives 486

- Introduction 486
- 10.1 Isoparametric Formulation of the Bar Element Stiffness Matrix 487
- 10.2 Isoparametric Formulation of the Plane Quadrilateral (Q4) Element Stiffness Matrix 492
- 10.3 Newton-Cotes and Gaussian Quadrature 503
- 10.4 Evaluation of the Stiffness Matrix and Stress Matrix by Gaussian Quadrature 509
- 10.5 Higher-Order Shape Functions (Including Q6, Q8, Q9, and Q12 Elements) 515 Summary Equations 526 References 530 Problems 530

Three-Dimensional Stress Analysis 536

Chapter Objectives 536 Introduction 536

- 11.1 Three-Dimensional Stress and Strain 537
- 11.2 Tetrahedral Element 539
- 11.3 Isoparametric Formulation and Hexahedral Element 547 Summary Equations 555

References 558 Problems 558

Plate Bending Element 572

Chapter Objectives 572 Introduction 572

- 12.1 Basic Concepts of Plate Bending 572
- 12.2 Derivation of a Plate Bending Element Stiffness Matrix and Equations 577
- 12.3 Some Plate Element Numerical Comparisons 582
- 12.4 Computer Solutions for Plate Bending Problems 584 Summary Equations 588 References 590 Problems 591

Heat Transfer and Mass Transport 599

Chapter Objectives 599 Introduction 599

- 13.1 Derivation of the Basic Differential Equation 601
- **13.2** Heat Transfer with Convection 604
- **13.3** Typical Units; Thermal Conductivities, *K*; and Heat Transfer Coefficients, *h* 605
- **13.4** One-Dimensional Finite Element Formulation Using a Variational Method 607
- **13.5** Two-Dimensional Finite Element Formulation 626
- 13.6 Line or Point Sources 636
- **13.7** Three-Dimensional Heat Transfer by the Finite Element Method 639

- **13.8** One-Dimensional Heat Transfer with Mass Transport 641
- **13.9** Finite Element Formulation of Heat Transfer with Mass Transport by Galerkin's Method 642
- 13.10 Flowchart and Examples of a Heat Transfer Program 646 Summary Equations 651 References 654 Problems 655

Fluid Flow in Porous Media and through Hydraulic Networks; and Electrical Networks and Electrostatics 673

Chapter Objectives 673

Introduction 673

- 14.1 Derivation of the Basic Differential Equations 674
- 14.2 One-Dimensional Finite Element Formulation 678
- 14.3 Two-Dimensional Finite Element Formulation 691
- 14.4 Flowchart and Example of a Fluid-Flow Program 696
- 14.5 Electrical Networks 697
- 14.6 Electrostatics 701
 - Summary Equations 715
 - References 719
 - Problems 720

Thermal Stress 727

- Chapter Objectives 727 Introduction 727
- 15.1 Formulation of the Thermal Stress Problem and Examples 727 Summary Equations 752 Reference 753 Problems 754

Structural Dynamics and Time-Dependent 16 761 Heat Transfer

Chapter Objectives 761

761 Introduction

- Dynamics of a Spring-Mass System 762 16.1
- Direct Derivation of the Bar Element Equations 764 16.2
- Numerical Integration in Time 768 16.3
- Natural Frequencies of a One-Dimensional Bar 780 16.4
- Time-Dependent One-Dimensional Bar Analysis 784 16.5
- Beam Element Mass Matrices and Natural Frequencies 16.6 789
- Truss, Plane Frame, Plane Stress, Plane Strain, Axisymmetric, and Solid 16.7 Element Mass Matrices 796
- Time-Dependent Heat Transfer 801 16.8

Computer Program Example Solutions for Structural Dynamics 16.9 808 Summary Equations 817 References 821 Problems 822

Appendix A Matrix Algebra 827

- **Appendix B** Methods for Solution of Simultaneous Linear Equations 843
- **Appendix C** Equations from Elasticity Theory 865
- Appendix D Equivalent Nodal Forces 873
- Appendix E Principle of Virtual Work 876

Geometric Properties of Structural Steel Wide-Flange Appendix F Sections (W Shapes) 880

Answers to Selected Problems 908

Index 938