Contents

1	Metals: the Drude and Sommerfeld models					
	1.1	.1 Introduction				
	1.2	2 What do we know about metals?				
	1.3	The Drude model				
		1.3.1	Assumptions	2		
		1.3.2	The relaxation-time approximation	3		
	1.4	The fa	ilure of the Drude model	4		
		1.4.1	Electronic heat capacity	4		
		1.4.2	Thermal conductivity and the Wiedemann-Franz ratio	4		
		1.4.3	Hall effect	6		
		1.4.4	Summary	7		
	1.5	The So	ommerfeld model	7		
		1.5.1	The introduction of quantum mechanics	7		
		1.5.2	The Fermi-Dirac distribution function	9		
		1.5.3	The electronic density of states	9		
		1.5.4	The electronic density of states at $E \approx E_{\rm F}$	10		
		1.5.5	The electronic heat capacity	11		
	1.6	Succes	sses and failures of the Sommerfeld model	13		
2		-	m mechanics of particles in a periodic potential:	16		
		ch's the		16 16		
	2.1		uction and health warning	16		
			ucing the periodic potential	17		
	2.3		von Karman boundary conditions	18		
	2.4					
	2.5		onic bandstructure	19 20		
3	The	nearly.	free electron model	23		
2	3.1			23		
	3.2			23		
	سکه ک			23		
		3.2.2	Several degenerate energy levels	24		
		3.2.3	Two degenerate free-electron levels	24		
	3.3		quences of the nearly-free-electron model	26		
	5.5	3.3.1	The alkali metals	27		
		3.3.2		27		
			Elements with even numbers of valence electrons	29		
		3.3.3	More complex Fermi surface shapes	47		

4	The tight-binding model			32	
	4.1 Introduction				
	4.2	Band a	arising from a single electronic level	32	
		4.2.1	Electronic wavefunctions	32	
		4.2.2	Simple crystal structure.	33	
		4.2.3	The potential and Hamiltonian	33	
	4.3	Genera	al points about the formation of tight-binding bands	35	
		4.3.1	The group IA and IIA metals; the tight-binding model		
			viewpoint	36	
		4.3.2	The Group IV elements	36	
		4.3.3	The transition metals	37	
5	Som	ie gener	al points about bandstructure	41	
	5.1	_	arison of tight-binding and nearly-free-electron		
		-	ructure	41	
	5.2		nportance of k	42	
		5.2.1	$\hbar \mathbf{k}$ is not the momentum	42	
		5.2.2	Group velocity	42	
		5.2.3	The effective mass	42	
		5.2.4	The effective mass and the density of states	43	
		5.2.5	Summary of the properties of k	44	
		5.2.6	Scattering in the Bloch approach	45	
	5.3	Holes		45	
	5.4	Postsc	ript	46	
93				40	
6		Semiconductors and Insulators 6.1 Introduction 4.5			
			uotion	49	
	6.2		tructure of Si and Ge	50	
		6.2.1	General points	50	
		6.2.2	Heavy and light holes	51	
		6.2.3	Optical absorption	51	
		6.2.4	Constant energy surfaces in the conduction bands of Si and Ge	52	
	6.3	Bands	tructure of the direct-gap III-V and II-VI semiconductors		
		6.3.1	Introduction	53	
		6.3.2	General points	53	
		6.3.3	Optical absorption and excitons	54	
		6.3.4	Excitons	55	
		6.3.5	Constant energy surfaces in direct-gap III-V		
			semiconductors	56	
*	6.4	Therm	nal population of bands in semiconductors	56	
		6.4.1	The law of mass action	56	
			The motion of the chemical potential	58	
		6.4.3	Intrinsic carrier density	58	
		6.4.4	Impurities and extrinsic carriers	59	
		6.4.5		60	
		6.4.6	Degenerate semiconductors	62	

		6.4.7	Impurity bands	62
		6.4.8	Is it a semiconductor or an insulator?	62
		6.4.9	A note on photoconductivity	63
7	Ban	dstruct	ure engineering	65
	7.1	Introd		65
	7.2	Semic	onductor alloys	65
	7.3	Artific	eial structures	66
		7.3.1	Growth of semiconductor multilayers	66
		7.3.2	Substrate and buffer layer	68
		7.3.3	Quantum wells	68
		7.3.4	Optical properties of quantum wells	69
		7.3.5	Use of quantum wells in opto-electronics	70
		7.3.6	Superlattices	71
		7.3.7	Type I and type II superlattices	71
		7.3.8	Heterojunctions and modulation doping	73
		7.3.9	The envelope-function approximation	74
	7.4	Band	engineering using organic molecules	75
		7.4.1	Introduction	75
		7.4.2	Molecular building blocks	75
		7.4.3	Typical Fermi surfaces	77
		7.4.4	A note on the effective dimensionality of Fermi-surface	;
			sections	78
	7.5	Layer	ed conducting oxides	78
	7.6	The P	eierls transition	81
8	Mea	sureme	ent of bandstructure	85
	8.1	Introd	uction	85
	8.2	Loren	tz force and orbits	85
		8.2.1	General considerations	85
		8.2.2	The cyclotron frequency	85
		8.2.3	Orbits on a Fermi surface	87
	8.3	The in	troduction of quantum mechanics	87
		8.3.1	Landau levels	87
		8.3.2	Application of Bohr's correspondence principle to	
			arbitrarily-shaped Fermi surfaces in a magnetic field	89
		8.3.3	Quantisation of the orbit area	90
		8.3.4	The electronic density of states in a magnetic field	91
	8.4	Quant	um oscillatory phenomena	91
		8.4.1	Types of quantum oscillation	93
		8.4.2	The de Haas-van Alphen effect	94
		8.4.3	Other parameters which can be deduced from quantum	
			oscillations	96
		8.4.4	Magnetic breakdown	97
	8.5	Cyclo	tron resonance	97
		8.5.1	Cyclotron resonance in metals	98
		8.5.2	Cyclotron resonance in semiconductors	98
	8.6	Interb	and magneto-optics in semiconductors	100

	8.7	Other to	echniques	102
		8.7.1	Angle-resolved photoelectron spectroscopy (ARPES)	103
		8.7.2	Electroreflectance spectroscopy	104
	8.8	Some c	ase studies	105
		8.8.1	Copper	105
		8.8.2	Recent controversy: Sr ₂ RuO ₄	106
		8.8.3	Studies of the Fermi surface of an organic molecular	
			metal	106
	8.9	Quasip	articles: interactions between electrons	112
9	Tran	sport of	f heat and electricity in metals and semiconductors	117
	9.1	-	digression; life without scattering would be difficult!	117
	9.2		al and electrical conductivity of metals	119
	7.2	9.2.1	Metals: the 'Kinetic theory' of electron transport	119
		9.2.2	What do τ_{σ} and τ_{κ} represent?	120
		9.2.3	Matthiessen's rule	122
		9.2.4	Emission and absorption of phonons	122
			What is the characteristic energy of the phonons	A. does dans
		7.2.5	involved?	123
		9.2.6	Electron-phonon scattering at room temperature	123
		9.2.7	Electron-phonon scattering at $T \ll \theta_{\rm D}$	123
		9.2.8	Departures from the low temperature $\sigma \propto T^{-5}$	
			dependence	124
		9.2.9	Very low temperatures and/or very dirty metals	124
		9.2.10	Summary	125
		9.2.11	Electron-electron scattering	125
	9.3	Electric	cal conductivity of semiconductors	127
		9.3.1	Temperature dependence of the carrier densities	127
		9.3.2	The temperature dependence of the mobility	128
	9.4	Disord	ered systems and hopping conduction	129
		9.4.1	Thermally-activated hopping	129
		9.4.2	Variable range hopping	130
10	Mag	netores	istance in three-dimensional systems	133
10	_	Introdu		133
			fect with more than one type of carrier	133
	10.2		General considerations	133
			Hall effect in the presence of electrons and holes	135
			A clue about the origins of magnetoresistance	135
	10.3		toresistance in metals	135
			The absence of magnetoresistance in the Sommerfeld	
			model of metals	135
		10.3.2	The presence of magnetoresistance in real metals	137
		10.3.3	The use of magnetoresistance in finding the	
			Fermi-surface shape	138
	104	The m	agnetophonon effect	139

11	Magnetoresistance in two-dimensional systems and the quantum Hall effect 1			
	Hall effect			
		Introduction: two-dimensional systems	143	
	11.2	Two-dimensional Landau-level density of states	144	
		11.2.1 Resistivity and conductivity tensors for a		
		two-dimensional system	145	
	11.3	Quantisation of the Hall resistivity	147	
		11.3.1 Localised and extended states	148	
		11.3.2 A further refinement– spin splitting	148	
		Summary	149	
		The fractional quantum Hall effect	150	
	11.6	More than one subband populated	151	
12	Inho	mogeneous and hot carrier distributions in semiconductors	154	
	12.1	Introduction: inhomogeneous carrier distributions	154	
		12.1.1 The excitation of minority carriers	154	
		12.1.2 Recombination	155	
		12.1.3 Diffusion and recombination	155	
	12.2	Drift, diffusion and the Einstein equations	156	
		12.2.1 Characterisation of minority carriers; the		
		Shockley-Haynes experiment	156	
	12.3	Hot carrier effects and ballistic transport	158	
		12.3.1 Drift velocity saturation and the Gunn effect	158	
		12.3.2 Avalanching	160	
		12.3.3 A simple resonant tunnelling structure	160	
		12.3.4 Ballistic transport and the quantum point contact	161	
A	Usef	ful terminology in condensed matter physics	165	
	A.1	Introduction	165	
	A.2	Crystal	165	
	A.3	Lattice	165	
	A.4	Basis	165	
	A.5	Physical properties of crystals	166	
	A.6	Unit cell	166	
	A.7	Wigner-Seitz cell	167	
		Designation of directions	167	
		Designation of planes; Miller indices	168	
		Conventional or primitive?	169	
	A.11	The 14 Bravais lattices	171	
В	Deri	vation of density of states in k-space	172	
	B.1	Introduction	172	
		B.1.1 Density of states	173	
		B.1.2 Reading	174	
C	Deri	vation of distribution functions	175	
	C.1	Introduction	175	
		C.1.1 Bosons	178	
		C.1.2 Fermions	178	
		C.1.3 The Maxwell-Boltzmann distribution function	178	
		C.1.4 Mean energy and heat capacity of the classical gas	179	

D	Pho	nons		181
D.1 Introduction			iction	181
	D.2	A simp	ole model	182
		D.2.1	Extension to three dimensions	183
	D.3	The De	ebye model	185
		D.3.1	Phonon number	187
		D.3.2	Summary; the Debye temperature as a useful energy	
			scale in solids	188
		D.3.3	A note on the effect of dimensionality	188
E	The	Bohr m	odel of hydrogen	191
	E.1	Introdu		191
	E.2	Hydro	genic impurities	192
	E.3	Excito	ns	192
	-			
F	Exp		al considerations in measuring resistivity and Hall	194
			ration	194
	F.1	Introdu		194
	F.2		ur-wire method	194
	F.3		e geometries	190
	F.4		n der Pauw method.	198
	F.5		ty spectrum analysis	198
	F.6	The rea	sistivity of layered samples	190
G	Can	onical n	nomentum	200
н	Sun	ercondu	ectivity	201
	-	Introdu		201
	H.2	Pairing		201
			g and the Meissner effect	203
I	List	of selec	eted symbols	205
J	Solu	itions ai	nd additional hints for selected exercises	209
	Index 2			