Contents

Preface

Statistics, Data, and Statistical Thinking

- 1.1 The Science of Statistics
- Types of Statistical Applications in Business 1.2
- 1.3 **Fundamental Elements of Statistics**
- 1.4 Processes (Optional)

59

69

81

92

13

Met	hods for Describing Sets of Data	57
	Louing and Lioting Data	
USING T	FECHNOLOGY: Accessing and Listing Data	50
ACTIVI	Y 1.2: Identifying Misleading Statistics	49
ACTIVI	Y 1.1: Keep the Change: Collecting Data	49
STATIS	TICS IN ACTION: A 20/20 View of Surveys and Studies: Facts or Fake News?	19
1.7	Business Analytics: Critical Thinking with Statistics	40
1.6	Collecting Data: Sampling and Related Issues	33
1.5	Types of Data	32

Nethods for Describing Sets of Data 2.1 **Describing Qualitative Data** Graphical Methods for Describing Quantitative Data 2.2 2.3 Numerical Measures of Central Tendency Numerical Measures of Variability 2.4

	2.5	Using the Mean and Standard Deviation to Describe Data	98
	2.6	Numerical Measures of Relative Standing	106
	2.7	Methods for Detecting Outliers: Box Plots and z-Scores	111
	2.8	Graphing Bivariate Relationships (Optional)	121
	2.9	The Time Series Plot (Optional)	126
	2.10	Distorting the Truth with Descriptive Techniques	128
	STATIST	ICS IN ACTION: Can Money Buy Love?	57
	ACTIVITY	2.1: Real Estate Sales	141
	ACTIVITY	2.2: Keep the Change: Measures of Central Tendency and Variability	142
	USING T	ECHNOLOGY: Describing Data	142
	MAKING	BUSINESS DECISIONS: The Kentucky Milk Case – Part I (Covers Chapters 1 and 2)	148

Probability

21 Events Sample Spaces and Probability 150

3.1	Events, Sample Spaces, and Frobability	152
3.2	Unions and Intersections	166
3.3	Complementary Events	169
3.4	The Additive Rule and Mutually Exclusive Events	171
3.5	Conditional Probability	178

3.6	The Multiplicative Rule and Independent Events	181
3.7	Bayes's Rule	191
STATISTICS IN ACTION: Lotto Buster!		150
ACTIVITY 3.1: Exit Polls: Conditional Probability		
ACTIVITY 3.2: Keep the Change: Independent Events		
USING 1	TECHNOLOGY: Combinations and Permutations	205

Random Variables and Probability Distributions 208 Two Types of Random Variables 4.1 209

PART I: DISCRETE RANDOM VARIABLES

212

4.2	Probability Distributions for Discrete Random Variables	212
4.3	The Binomial Distribution	223
4.4	Other Discrete Distributions: Poisson and Hypergeometric	236
PART	II: CONTINUOUS RANDOM VARIABLES	243
4.5	Probability Distributions for Continuous Random Variables	243
4.6	The Normal Distribution	244
4.7	Descriptive Methods for Assessing Normality	261
4.8	Other Continuous Distributions: Uniform and Exponential	266
STATIST	ICS IN ACTION: Probability in a Reverse Cocaine Sting: Was Cocaine Really Sold?	208
ACTIVIT	Y 4.1: Warehouse Club Memberships: Exploring a Binomial Random Variable	282
ACTIVIT	Y 4.2: Identifying the Type of Probability Distribution	283
USING T	ECHNOLOGY: Discrete Probabilities, Continuous Probabilities, and Normal Probability Plots	284

Sampling Distributions

The Concept of a Sampling Distribution 5.1 293 5.2 Properties of Sampling Distributions: Unbiasedness and Minimum Variance 299 5.3 The Sampling Distribution of the Sample Mean and the Central Limit Theorem 303 The Sampling Distribution of the Sample Proportion 5.4 312 **STATISTICS IN ACTION:** The Insomnia Pill: Is It Effective? 291 **ACTIVITY 5.1:** Simulating a Sampling Distribution – Cell Phone Usage 322 **USING TECHNOLOGY:** Simulating a Sampling Distribution 323 MAKING BUSINESS DECISIONS: The Furniture Fire Case (Covers Chapters 3-5) 326

Inferences Based on a Single Sample: **Estimation with Confidence Intervals**

328

330

331

339

349

356

291

6.1 Identifying and Estimating the Target Parameter 6.2 Confidence Interval for a Population Mean: Normal (z) Statistic 6.3 Confidence Interval for a Population Mean: Student's t-Statistic 6.4 Large-Sample Confidence Interval for a Population Proportion 6.5 Determining the Sample Size

6.6 Finite Population Correction for Simple Random Sampling (Optional)		363
6.7	Confidence Interval for a Population Variance (Optional)	366
STATISTICS IN ACTION: Medicare Fraud Investigations		328
ACTIVITY 6.1: Conducting a Pilot Study		378
USING	USING TECHNOLOGY: Confidence Intervals and Sample Size Determination	

Inferences Based on a Single Sample: Tests of Hypotheses

- 7.1 The Elements of a Test of Hypothesis
- 7.2 Formulating Hypotheses and Setting Up the Rejection Region

7.3	Observed Significance Levels: p-Values	399
7.4	Test of Hypothesis About a Population Mean: Normal (z) Statistic	403
7.5	Test of Hypothesis About a Population Mean: Student's t-Statistic	412
7.6	Large-Sample Test of Hypothesis About a Population Proportion	419
7.7	Test of Hypothesis About a Population Variance	427
7.8	Calculating Type II Error Probabilities: More About β (Optional)	432
STATIS	TICS IN ACTION: Diary of a Kleenex [®] User—How Many Tissues in a Box?	387
ACTIVI	TY 7.1: Challenging a Company's Claim: Tests of Hypotheses	446
ACTIVI	TY 7.2: Keep the Change: Tests of Hypotheses	446
USING	TECHNOLOGY: Tests of Hypotheses	447

Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses 454

8.1	Identifying the Target Parameter	455
8.2	Comparing Two Population Means: Independent Sampling	456
8.3	Comparing Two Population Means: Paired Difference Experiments	472
8.4	Comparing Two Population Proportions: Independent Sampling	483
8.5	Determining the Required Sample Size	491
8.6	Comparing Two Population Variances: Independent Sampling	496
STATIS	TICS IN ACTION: ZixIt Corp. v. Visa USA Inc. – A Libel Case	454
ACTIVIT	TY 8.1: Box Office Receipts: Comparing Population Means	514
ACTIVI	TY 8.2: Keep the Change: Inferences Based on Two Samples	514
USING	TECHNOLOGY: Two-Sample Inferences	515
MAKIN	G BUSINESS DECISIONS: The Kentucky Milk Case – Part II (Covers Chapters 6–8)	525

Design of Experiments and Analysis of Variance 526

STATISTICS IN ACTION: Tax Compliance Behavior – Factors That Affect Your Level of
Risk Taking When Filing Your Federal Tax Return526ACTIVITY 9.1: Designed vs. Observational Experiments598USING TECHNOLOGY: Analysis of Variance599

10

Cate	603	
10.1	Categorical Data and the Multinomial Experiment	604
10.2	Testing Category Probabilities: One-Way Table	606
10.3	Testing Category Probabilities: Two-Way (Contingency) Table	613
10.4	A Word of Caution About Chi-Square Tests	629

STATISTICS IN ACTION: The Illegal Transplant Tissue Trade — Who Is Responsible	
for Paying Damages?	603
ACTIVITY 10.1: Binomial vs. Multinomial Experiments	635
ACTIVITY 10.2: Contingency Tables	636
USING TECHNOLOGY: Chi-Square Analyses	636
MAKING BUSINESS DECISIONS: Discrimination in the Workplace (Covers Chapters 9–10)	641

644

737

744

754

762

Divine-	5. A.	1
-	1-	1

Simple Linear Regression

11.1	Probabilistic Models	646
11.2	Fitting the Model: The Least Squares Approach	650
11.3	Model Assumptions	662
11.4	Assessing the Utility of the Model: Making Inferences About the Slope β_1	667
11.5	The Coefficients of Correlation and Determination	675
11.6	Using the Model for Estimation and Prediction	684
11.7	A Complete Example	693
STATIST	ICS IN ACTION: Legal Advertising – Does It Pay?	644
ACTIVIT	Y 11.1: Applying Simple Linear Regression to Your Favorite Data	707
USING T	ECHNOLOGY: Simple Linear Regression	707

Bart Sa - Ar

Mult	iple Regression and Model Building	711
12.1	Multiple Regression Models	712
PART I	: FIRST-ORDER MODELS WITH QUANTITATIVE INDEPENDENT VARIABLES	714
12.2	Estimating and Making Inferences About the β Parameters	714
12.3	Evaluating Overall Model Utility	720
12.4	Using the Model for Estimation and Prediction	731
PART I	I: MODEL BUILDING IN MULTIPLE REGRESSION	737

12.5 Interaction Models

- 12.6 Quadratic and Other Higher-Order Models
- 12.7 Qualitative (Dummy) Variable Models
- **12.8** Models with Both Quantitative and Qualitative Variables

12.9	Comparing Nested Models	771
12.10	Stepwise Regression	778
PART	II: MULTIPLE REGRESSION DIAGNOSTICS	787
12.11	Residual Analysis: Checking the Regression Assumptions	787
12.12	Some Pitfalls: Estimability, Multicollinearity, and Extrapolation	800
STATIST	ICS IN ACTION: Bid Rigging in the Highway Construction Industry	711
ACTIVITY	12.1: Insurance Premiums: Collecting Data for Several Variables	821
ACTIVITY	12.2: Collecting Data and Fitting a Multiple Regression Model	822
USING T	ECHNOLOGY: Multiple Regression	822
MAKING	BUSINESS DECISIONS: The Condo Sales Case (Covers Chapters 11–12)	828

d - - - - 250

13	Met Stat	hods for Quality Improvement: istical Process Control (Available Online)	13-1
	13.1	Quality, Processes, and Systems	13-3
	13.2	Statistical Control	13-6
	13.3	The Logic of Control Charts	13-13
	13.4	A Control Chart for Monitoring the Mean of a Process: The x-Chart	13-17
	13.5	A Control Chart for Monitoring the Variation of a Process: The R-Chart	13-33
	13.6	A Control Chart for Monitoring the Proportion of Defectives Generated by a Process: The <i>p</i> -Chart	13-43
	13.7	Diagnosing the Causes of Variation	13-52
	13.8	Capability Analysis	13-55
	STATIS	TICS IN ACTION: Testing Jet Fuel Additive for Safety	13-1
	ACTIVIT	Y 13.1: Quality Control: Consistency	13-66
	USING 1	TECHNOLOGY: Control Charts	13-67

USING TECHNOLOGY: Control Charts

MAKING BUSINESS DECISIONS: The Gasket Manufacturing Case (Covers Chapter 13) 13-70

State of State of State

	Time	e Series: Descriptive Analyses, Models,		
and Forecasting (Available Online)				
	14.1	Descriptive Analysis: Index Numbers	14-2	
	14.2	Descriptive Analysis: Exponential Smoothing	14-12	
	14.3	Time Series Components	14-16	
	14.4	Forecasting: Exponential Smoothing	14-17	
	14.5	Forecasting Trends: Holt's Method	14-20	
	14.6	Measuring Forecast Accuracy: MAD and RMSE	14-25	
	14.7	Forecasting Trends: Simple Linear Regression	14-29	
	14.8	Seasonal Regression Models	14-32	

Nonparametric Statistics (Available Online)				
15.1	Introduction: Distribution-Free Tests	15-2		
15.2	Single Population Inferences	15-3		
15.3	Comparing Two Populations: Independent Samples	15-8		
15.4	Comparing Two Populations: Paired Difference Experiment	15-19		
15.5	Comparing Three or More Populations: Completely Randomized Design	15-27		
15.6	Comparing Three or More Populations: Randomized Block Design	15-34		
15.7	Rank Correlation	15-40		
STATIST	ICS IN ACTION: Pollutants at a Housing Development – A Case of Misbandling Small Samples	15 1		
ACTIVITY	15 1. Keen the Change: Nonnarametric Statistics	15.54		
ACTIVITY	15.1: Keep the Change: Nonparametric Statistics	15-		

USING TECHNO	LOGY: Nonparametric Tests	15-55
MAKING BUSIN	ESS DECISIONS: Detecting "Sales Chasing" (Covers Chapters 10 and 15)	15-62
	13.1 Ouelity, Piggaggag, end saterna	62.6
Appendix A:	Summation Notation	830
Appendix B:	Basic Counting Rules	832
Appendix C:	Calculation Formulas for Analysis of Variance	83
C.1	Formulas for the Calculations in the Completely Randomized Design	83
C.2	Formulas for the Calculations in the Randomized Block Design	83
C.3	Formulas for the Calculations for a Two-Factor Factorial Experiment	83
C.4	Tukey's Multiple Comparisons Procedure (Equal Sample Sizes)	83
C.5	Bonferroni Multiple Comparisons Procedure (Pairwise Comparisons)	83
C.6	Scheffé's Multiple Comparisons Procedure (Pairwise Comparisons)	83
Appendix D:	Tables	84

Table I	Binomial Probabilities	841
Table II	Normal Curve Areas	844
Table III	Critical Values of t	845
Table IV	Critical Values of χ^2	846
Table V	Percentage Points of the <i>F</i> -Distribution, $\alpha = .10$	848
Table VI	Percentage Points of the <i>F</i> -Distribution, $\alpha = .05$	850
Table VII	Percentage Points of the <i>F</i> -Distribution, $\alpha = .025$	852
Table VIII	Percentage Points of the <i>F</i> -Distribution, $\alpha = .01$	854
Table IX	Control Chart Constants	856
Table X	Critical Values for the Durbin-Watson <i>d</i> -Statistic, $\alpha = .05$	857
Table XI	Critical Values for the Durbin-Watson <i>d</i> -Statistic, $\alpha = .01$	858
Table XII	Critical Values of T_L and T_U for the Wilcoxon Rank Sum Test: Independent Samples	859
Table XIII	Critical Values of T_0 in the Wilcoxon Paired Difference Signed Rank Test	860
Table XIV	Critical Values of Spearman's Rank Correlation Coefficient	861

862

863

875

885

Table XV Critical Values of the Studentized Range, $\alpha = .05$

Answers to Selected Exercises Index Credits

1- 40

Base