Contents

- 1 Atomic Structure and Isotopes
 - 1.1 Atomic Theory
 - 1.2 The Structure of the Atom
 - 1.3 Isotopes
 - 1.4 Relative Atomic Mass
 - 1.5 Problems
- 2 Formula and Molecular Mass2.1 Formula Mass
 - 2.2 Molecular Mass
 - -----

	2.3 Molar Mass	10
	2.4 Problems	11
3	The Mole and Avogadro's Number	13
5	3.1 The Mole and Avogadro's Number (N_A)	13
	3.2 The Mole and Molar Mass	13
	3.3 Calculating the Number of Moles	13
	3.4 Problems	18
4	Formulas of Compounds and Percent Composition	19
	4.1 Percent Composition	19
	4.2 Types of Chemical Formula	22
	4.3 Empirical Formula from Combustion Analysis	25
	4.4 Molecular Formula	27
	4.5 Problems	29
5	Chemical Formulas and Nomenclature	31
	5.1 General Background	31

5.2 Chemical Formula
5.3 Oxidation Numbers
5.4 Writing the Formulas of Compounds
5.5 Nomenclature of Inorganic Compounds
5.6 Problems

X	Contents	
6	Chemical Equations 6.1 Writing Chemical Equations 6.2 Balancing Chemical Equations 6.3 Types of Chemical Reactions	43 43 43 46
	6.4 Problems	48
7	 Stoichiometry 7.1 Reaction Stoichiometry 7.2 Information From a Balanced Equation 7.3 Types of Stoichiometric Problem 7.4 Limiting Reagents 7.5 Reaction Yields: Theoretical, Actual, and Percent Yields 7.6 Problems 	50 50 50 50 57 59 60
8	 Structure of the Atom 8.1 Electronic Structure of the Atom 8.2 Electromagnetic Radiation 8.3 The Nature of Matter and Quantum Theory 8.4 The Hydrogen Atom 8.5 The Quantum-Mechanical Description of the Hydrogen Atom 8.6 Quantum Mechanics and Atomic Orbitals 8.7 Electronic Configuration of Multielectron Atoms 8.8 Problems 	64 64 66 67 70 71 75 78
9	 Chemical Bonding 1: Basic Concepts 9.1 Introduction: Types of Chemical Bonds 9.2 Lewis Dot Symbols 9.3 Ionic Bonding: Formation of Ionic Compounds 9.4 Covalent Bonding: Lewis Structures for Molecules 9.5 Covalent Bonding: Writing Lewis Structures 9.6 Resonance and Formal Charge 9.7 Exceptions to the Octet Rule 9.8 Polar Covalent Bonds: Bond Polarity and Electronegativity 9.9 Problems 	 81 81 81 83 86 86 88 91 93 98
10	 Chemical Bonding 2: Modern Theories of Chemical Bonding 10.1 VSPER Theory: Molecular Geometry and the Shapes of Molecules 10.2 VSEPR Theory: Predicting Electron Group Geometry and Molecular Shape with the VSEPR Model 10.3 VSEPR Theory: Predicting Molecular Shape and Polarity 10.4 Valence Bond Theory 10.5 Valence Bond Theory: Types of Overlap 10.6 Hybridization 	102 102 103 107 110 111 112

Contents	xi
10.7 Limitations of Valence Bond Theory	119
10.8 Molecular Orbital Theory	120
10.9 Problems	125
11 Gas Laws	129
11.1 Standard Temperature and Pressure	129
11.2 Boyle's Law: Volume vs Pressure	129
11.3 Charles's Law: Volume vs Temperature	130
11.4 The Combined Gas Law	132
11.5 Gay-Lussac's Law and Reactions Involving Gases	134
11.6 Avogadro's Law	136
11.7 The Ideal Gas Law	137
11.8 Density and Molecular Mass of a Gas	139
11.9 Molar Volume of an Ideal Gas	140
11.10 Dalton's Law of Partial Pressure	142
11.11 Partial Pressure and Mole Fraction	143
11.12 Real Gases and Deviation from the Gas Laws	144
11.13 Graham's Law of Diffusion	146
11.14 Problems	148
12 Liquids and Solids	152
12.1 The Liquid State	152
12.2 Vapor Pressure and the Clausius-Clapeyron Equation	152
12.3 The Solid State	155
12.4 The Crystal System	156
12.5 Calculations Involving Unit Cell Dimensions	159
12.6 Ionic Crystal Structure	165
12.7 The Radius Ratio Rule for Ionic Compounds	167
12.8 Determination of Crystal Structure by X-Ray Diffraction	171
12.9 Problems	174
13 Solution Chemistry	177
13.1 Solution and Solubility	177
13.2 Concentration of Solutions	178
13.3 Solving Solubility Problems	188
13.4 Effect of Temperature on Solubility	191
13.5 Solubility Curves	191
13.6 Effect of Pressure on Solubility	193
13.7 Problems	194
14 Volumetric Analysis	199
14.1 Introduction	199
14.2 Applications of Titration	199

-

xii	Contents	
	14.3 Calculations Involving Acid-Base Titration	200
	14.4 Back Titrations	206
	14.5 Kjeldahl Nitrogen Determination	210
	14.6 Problems	212
15	Ideal Solutions and Colligative Properties	214
	15.1 Colligative Properties	214
	15.2 Vapor Pressure and Raoult's Law	214
142	15.3 Elevation of Boiling Point	217
	15.4 Depression of Freezing Point	220
	15.5 Osmosis and Osmotic Pressure	222
	15.6 Problems	225
16	Chemical Kinetics	228

	16.1 Rates of Reaction	228
	16.2 Measurement of Reaction Rates	228
	16.3 Reaction Rates and Stoichiometry	233
	16.4 Collision Theory of Reaction Rates	234
	16.5 Rate Laws and the Order of Reactions	235
	16.6 Experimental Determination of Rate Law Using Initial Rates	236
	16.7 The Integrated Rate Equation	240
	16.8 Half-Life of a Reaction	246
	16.9 Reaction Rates and Temperature: The Arrhenius Equation	248
	16.10 Problems	250
17	Chemical Equilibrium	255
17	17.1 Reversible and Irreversible Reactions	255
	17.2 The Equilibrium Constant	255
	17.3 The Reaction Quotient	2.59
	17.4 Predicting the Direction of Reaction	259
	17.5 Position of Equilibrium	260
	17.6 Homogeneous vs Heterogeneous Equilibria	261
	17.7 Calculating Equilibrium Constants	262
	17.8 Calculating Equilibrium Concentrations from K	263
	17.9 Qualitative Treatment of Equilibrium: Le Chatelier's Principle	268
	17.10 Problems	273
10	T . T	276
18	18.1 The Ionization of Water	276
	18.2 Definition of Acidity and Decicity	276
	10.2 The nU of a Solution	270
	18.4 The pOU of a Solution	211
	18.4 The port of a Solution	218
	18.5 The Acid Ionization Constant, K _a	280

Contents

Contents	xiii
n Concentrations in Solutions of Weak Acids	280
Acids	283
t, <i>K</i> _b	285
<i>b</i>	286
operties of Salts	288
	292
ions	293
	298

	10 (Colorlating nU and Equilibrium Concentrations in Solutions of Weak Acids	200
	18.6 Calculating pri and Equinorium Concentrations in Solutions of weak Acids	200
	18.7 Percent Dissociation of weak Acids	283
	18.8 The Base Dissociation Constant, K _b	285
	18.9 Relationship Between K_a and K_b	286
	18.10 Salt Hydrolysis: Acid–Basis Properties of Salts	288
	18.11 The Common Ion Effect	292
	18.12 Buffers and pH of Buffer Solutions	293
	18.13 Polyprotic Acids and Bases	298
	18.14 More Acid–Base Titration	301
	18.15 pH Titration Curves	303
	18.16 Problems	308
9	Solubility and Complex-Ion Equilibria	313
	19.1 Solubility Equilibria	313
	19.2 The Solubility Product Principle	313
	19.3 Determining K_{sp} from Molar Solubility	314
	19.4 Calculating Molar Solubility from K _{sp}	316
	19.5 K_{sp} and Precipitation	318
	19.6 Complex-Ion Equilibria	320
	19.7 Problems	323
)	Thermochemistry	325
	20.1 Introduction	325
	20.2 Calorimetry and Heat Capacity	325
	20.3 Enthalpy	327
	20.4 Hess's Law of Heat Summation	331
	20.5 Lattice Energy and the Born-Haber Cycle	333
	20.6 Bond Energies and Enthalpy	335
	20.7 Problems	338

1	Chemical Thermodynamics	344
	21.1 Definition of Terms	344
	21.2 The First Law of Thermodynamics	344
	21.3 Expansion Work	345
	21.4 Entropy	348
	21.5 The Second Law of Thermodynamics	348
	21.6 Calculation of Entropy Changes in Chemical Reactions	348
	21.7 Free Energy	352
	21.8 The Standard Free Energy Change	352
	21.9 Enthalpy and Entropy Changes during a Phase Change	355
	21.10 Free Energy and the Equilibrium Constant	356
	21.11 Variation of ΔG^0 and Equilibrium Constant with Temperature	358
	21.12 Problems	361

2

xiv	Contents	
22	Oxidation and Reduction Reactions	365
	22.1 Introduction	365
	22.2 Oxidation and Reduction in Terms of Electron Transfer	365
	22.3 Oxidation Numbers (ON)	366
	22.4 Oxidation and Reduction in Terms of Oxidation Number	368
	22.5 Disproportionation Reactions	369
	22.6 Oxidizing and Reducing Agents	369
	22.7 Half-Cell Reactions	371
	22.8 Balancing Redox Equations	372
	22.9 Oxidation-Reduction Titration	381
	22.10 Problems	385
23	Fundamentals of Electrochemistry	389
	23.1 Galvanic Cells	389
	23.2 The Cell Potential	389
	23.3 Standard Electrode Potential	390
	23.4 The Electrochemical Series (ECS)	391
	23.5 Applications of Electrode Potential	391
	23.6 Cell Diagrams	393
	23.7 Calculating E_{cell}^0 from Electrode Potential	394
	23.8 Relationship of the Standard Electrode Potential, the Gibbs Free Energy, and the Equilibrium Constant	396
	23.9 Dependence of Cell Potential on Concentration (the Nernst Equation)	399
	23.10 Electrolysis	402
	23.11 Faraday's Laws of Electrolysis	402
	23.12 Problems	408
24	Radioactivity and Nuclear Reactions	412
	24.1 Definitions	412
	24.2 Radioactive Decay and Nuclear Equations	412
	24.3 Nuclear Transmutations	415
	24.4 Rates of Radioactive Decay and Half-Life	416
	24.5 Energy of Nuclear Reactions	419
	24.6 Problems	423
App	endix A	427
	A.1 Essential mathematics	427
	A.2 Significant figures and mathematical operations	428
	A.3 Scientific notation and exponents	429
	A.4 Logarithms	432
	A.5 Algebraic equations	434

Contents	XV
Appendix B	445
B.1 Systems of measurement	445
B.2 Measurement of mass, length, and time	446
B.3 Temperature	447
B.4 Derived units	448
B.5 Density and specific gravity	449
B.6 Dimensional analysis and conversion factors	451

Solutions Index

457 495

