Contents | Intr | oduct | ion | 1 | |------|---|---|--| | Part | $\mathbf{I} C_0$ | (X) and $B(H)$ | | | 1 | 1.1
1.2
1.3 | Basic constructions of probability theory Classical observables and states Pure states and transition probabilities | 23
24
26
31 | | | 1.5 | The logic of classical mechanics | 36 | | 2 | 2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10 | Quantum probability theory and the Born rule Quantum observables and states Pure states in quantum mechanics The GNS-construction for matrices The Born rule from Bohrification The Kadison–Singer Problem Gleason's Theorem Proof of Gleason's Theorem Effects and Busch's Theorem The quantum logic of Birkhoff and von Neumann | 40
43
46
50
54
57
59
62
71
75 | | 3 | 3.13.23.33.4 | Vector fields and their flows Poisson brackets and Hamiltonian vector fields Symmetries of Poisson manifolds The momentum map | 85
88
90
94 | TELL CONTROL CO the first transfer and the contract of con | 4 | Quai | ntum physics on a general Hilbert space | . 103 | |-----|--------|--|-------| | | 4.1 | The Born rule from Bohrification (II) | . 104 | | | 4.2 | Density operators and normal states | . 109 | | | 4.3 | The Kadison-Singer Conjecture | . 113 | | | 4.4 | Gleason's Theorem in arbitrary dimension | . 119 | | | Note | S | . 123 | | 5 | Sym | metry in quantum mechanics | . 125 | | | | Six basic mathematical structures of quantum mechanics | | | | 5.2 | The case $H = \mathbb{C}^2 \dots \dots$ | . 130 | | | 5.3 | Equivalence between the six symmetry theorems | . 137 | | | 5.4 | Proof of Jordan's Theorem | . 145 | | | 5.5 | Proof of Wigner's Theorem | . 147 | | | | Some abstract representation theory | | | | | Representations of Lie groups and Lie algebras | | | | | Irreducible representations of $SU(2)$ | | | | | Irreducible representations of compact Lie groups | | | | 5.10 | Symmetry groups and projective representations | . 167 | | | | Position, momentum, and free Hamiltonian | | | | | Stone's Theorem | | | | Note | S | . 187 | | Par | t II B | Setween $C_0(X)$ and $B(H)$ | | | 6 | Clas | sical models of quantum mechanics | . 191 | | | 6.1 | From von Neumann to Kochen-Specker | . 193 | | | | The Free Will Theorem | | | | 6.3 | Philosophical intermezzo: Free will in the Free Will Theorem | . 205 | | | | Technical intermezzo: The GHZ-Theorem | | | | 6.5 | Bell's theorems | . 213 | | | | The Colbeck-Renner Theorem | | | | | S | | | 7 | Limi | its: Small ħ | . 247 | | | 7.1 | Deformation quantization | . 250 | | | | Quantization and internal symmetry | | | | | Quantization and external symmetry | | | | 7.4 | Intermezzo: The Big Picture | . 259 | | | 7.5 | Induced representations and the imprimitivity theorem | . 262 | | | | Representations of semi-direct products | | | | 2 (21) | | | | | 7.7 | Quantization and permutation symmetry | . 275 | | | 7.7 | THE RESERVE OF THE PERSON AND ADDRESS ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON | | Contents | 8 | Limits: large N | | | | | |-----|--------------------------------------|--|--|--|--| | | 8.1 | Large quantum numbers | | | | | | 8.2 | Large systems | | | | | | 8.3 | Quantum de Finetti Theorem | | | | | | 8.4 | Frequency interpretation of probability and Born rule | | | | | | 8.5 | Quantum spin systems: Quasi-local C*-algebras | | | | | | | Quantum spin systems: Bundles of C*-algebras | | | | | | | s | | | | | 9 | Symmetry in algebraic quantum theory | | | | | | 613 | 9.1 | Symmetries of C*-algebras and Hamhalter's Theorem | | | | | | 9.2 | Unitary implementability of symmetries | | | | | | | Motion in space and in time | | | | | | | Ground states of quantum systems | | | | | | | Ground states and equilibrium states of classical spin systems 352 | | | | | | | Equilibrium (KMS) states of quantum systems | | | | | | | es | | | | | | 11010 | | | | | | 10 | Spor | ntaneous Symmetry Breaking | | | | | | 0.77 | Spontaneous symmetry breaking: The double well | | | | | | 10.2 | Spontaneous symmetry breaking: The flea | | | | | | 10.3 | Spontaneous symmetry breaking in quantum spin systems 379 | | | | | | 10.4 | Spontaneous symmetry breaking for short-range forces | | | | | | | Ground state(s) of the quantum Ising chain | | | | | | | Exact solution of the quantum Ising chain: N < ∞ | | | | | | | Exact solution of the quantum Ising chain: $N = \infty \dots 397$ | | | | | | 10.8 | Spontaneous symmetry breaking in mean-field theories 409 | | | | | | | The Goldstone Theorem | | | | | | | 0 The Higgs mechanism | | | | | | | es | | | | | | | | | | | | 11 | The | measurement problem | | | | | | 11.1 | The rise of orthodoxy | | | | | | 11.2 | The rise of modernity: Swiss approach and Decoherence | | | | | | 11.3 | Insolubility theorems | | | | | | 11.4 | The Flea on Schrödinger's Cat | | | | | | Note | es | | | | | 12 | Top | os theory and quantum logic | | | | | | 12.1 | C*-algebras in a topos | | | | | | | The Gelfand spectrum in constructive mathematics 466 | | | | | | | Internal Gelfand spectrum and intuitionistic quantum logic 471 | | | | | | | Internal Gelfand spectrum for arbitrary C*-algebras | | | | | | | "Daseinisation" and Kochen-Specker Theorem | | | | | | | es | | | | | | | | | | | xiv | A | Finit | te-dimensional Hilbert spaces | 495 | |---|-------|--|-----| | | A.1 | Basic definitions | 495 | | | A.2 | Functionals and the adjoint | 497 | | | A.3 | Projections | 499 | | | A.4 | Spectral theory | 500 | | | A.5 | Positive operators and the trace | 507 | | | | S | 513 | | В | Basic | c functional analysis | | | | B.1 | Completeness | 516 | | | | ℓ^p spaces | | | | | Banach spaces of continuous functions | | | | | Basic measure theory | | | | B.5 | Measure theory on locally compact Hausdorff spaces | 526 | | | B.6 | L^p spaces | 534 | | | B.7 | Morphisms and isomorphisms of Banach spaces | 538 | | | B.8 | The Hahn-Banach Theorem | 541 | | | B.9 | Duality | 545 | | | B.10 | The Krein-Milman Theorem | 553 | | | B.11 | Choquet's Theorem | 557 | | | B.12 | A précis of infinite-dimensional Hilbert space | 562 | | | B.13 | Operators on infinite-dimensional Hilbert space | 568 | | | B.14 | Basic spectral theory | 577 | | | B.15 | The spectral theorem | 585 | | | B.16 | Abelian *-algebras in $B(H)$ | 593 | | | B.17 | Classification of maximal abelian *-algebras in $B(H)$ | 601 | | | B.18 | Compact operators | 608 | | | B.19 | Spectral theory for self-adjoint compact operators | 611 | | | B.20 | The trace | 617 | | | B.21 | Spectral theory for unbounded self-adjoint operators | 625 | | | Note | es | | | C | Ope | rator algebras | 645 | | | C.1 | Basic definitions and examples | 645 | | | C.2 | Gelfand isomorphism | 648 | | | C.3 | Gelfand duality | 653 | | | C.4 | Gelfand isomorphism and spectral theory | 657 | | | C.5 | C*-algebras without unit: general theory | 660 | | | C.6 | C*-algebras without unit: commutative case | 664 | | | C.7 | Positivity in C*-algebras | 668 | | | C.8 | Ideals in Banach algebras | 671 | | | C.9 | Ideals in C*-algebras | 674 | | | C.10 | Hilbert C*-modules and multiplier algebras | 677 | | | | Gelfand topology as a frame | | | | C.12 | The structure of C*-algebras | 691 | | | C.14
C.15
C.16
C.17
C.18
C.19
C.20
C.21
C.22 | Tensor products of Hilbert spaces and C*-algebras | |-----|--|--| | | | Other special classes of C*-algebras | | | | Jordan algebras and (pure) state spaces of C*-algebras | | | 100 | s | | | 1,000 | | | D | Latt | ices and logic | | | D.1 | Order theory and lattices | | | D.2 | Propositional logic | | | | Intuitionistic propositional logic | | | D.4 | First-order (predicate) logic | | | D.5 | Arithmetic and set theory | | | Note | s | | E | Cate | gory theory and topos theory | | | | Basic definitions | | | | Toposes and functor categories | | | | Subobjects and Heyting algebras in a topos | | | | Internal frames and locales in sheaf toposes | | | | Internal language of a topos | | | | s | | Ref | erenc | es | | Ind | ex | |