Contents

Pr	efac	e			X
Or	1e	Basic Muscle	Physiology and Energetics		
1	En	ergy sources fo	or muscular activity		
	1.1		triphosphate: the energy currency		:
	1.2				4
	1.3		ply for muscle contraction		4
	1.4		tems and running speed		
	1.5	Why can't	a marathon be sprinted?		
	1.6		rces and muscle		8
	1.7		use protein for energy?	englishingongo bek sa	9
	1.8				10
2	Sk	eletal muscle s	tructure and function		11
	2.1	Skeletal mu	iscle structure		12
		2.1.1 Gr	oss anatomical structure		12
		2.1.2 Th	e muscle fibre		13
	2.2	Muscle con	traction		18
		2.2.1 Pro	opagation of the action potential		18
		2.2.2 Ex	citation-contraction coupling		18
		2.2.3 Th	e sliding filament mechanism		20
	2.3	Muscle fibr	e types		21
		2.3.1 Ge	neral classification of muscle fibre	S	21
		2.3.2 Mi	iscle fibre distribution		23
		2.3.3 Mu	iscle fibre recruitment		24
	2.4	Muscles in	action		26
		2.4.1 Ty	pes of muscle contraction		26
		2.4.2 Th	e twitch contraction		26
		2.4.3 Th	e length-tension relationship		27

eminourise symbological C.E.A.

englisher vicinist C.C.A

tens, materiales, compounds and macromunicum silves still

		2.4.4	Tetanus contractions	27
		2.4.5	Force-velocity relationship	28
		2.4.6	Muscle fatigue	29
	2.5	Key po		29
3	Bioc	hemical	concepts	31
	3.1		ization of matter	32
			Matter and elements	32
		3.1.2	Atoms and atomic structure	32
		3.1.3	Atomic number and mass number	34
		3.1.4	Atomic mass	34
		3.1.5	Ions, molecules, compounds and macronutrients	34
	3.2	Chemi	cal bonding	35
		3.2.1	Ionic bonds	36
		3.2.2	Covalent bonds	36
		3.2.3	Molecular formulae and structures	38
		3.2.4	Functional groups	39
	3.3	Chemi	cal reactions, ATP and energy	40
		3.3.1	Energy	40
		3.3.2	ATP	41
		3.3.3	Units of energy	42
		3.3.4	Types of chemical reactions	43
	3.4	Water		45
		3.4.1	General functions of water	45
		3.4.2	Water as a solvent	46
	3.5	Solutio	ons and concentrations	46
	3.6	Acid-b	ase balance	47
		3.6.1	Acids, bases and salts	47
		3.6.2	pH Scale	48
		3.6.3	Buffers	49
	3.7	Cell st	ructure	49
		3.7.1	The plasma membrane	50
		3.7.2	The nucleus	51
		3.7.3	Cytoplasm and organelles	51
	3.8	Key po	oints	53
Tv	vo F	undame	entals of Sport and Exercise Biochemistry	55
4	Prote		2.2.2 bisselle fibre distribution	57
	4.1		function	58
			General protein function	59
	4.2	Amino		62
		4.2.1	Amino acid structure	62
	4.3		structure	62
		4.3.1	Primary structure	62
		4.3.2	Secondary structure	65
		4.3.3	Tertiary structure	65

CONTENTS

		CONTENTS			vi
		4.3.4 Quaternary structure			65
	4.4	Proteins as enzymes			67
		4.4.1 Mechanisms of enzyme action			67
		4.4.2 Factors affecting rates of enzymatic reactions	i siayloqi.i		68
		4.4.3 Coenzymes and cofactors			70
		4.4.4 Classification of enzymes			70
		4.4.5 Regulation of enzyme activity	Formation of fany		72
	4.5	Protein turnover			73
		4.5.1 Overview of protein turnover			73
		4.5.2 DNA structure			73
		4.5.3 Transcription			74
		4.5.4 The genetic code			74
		4.5.5 Translation			76
	4.6	Amino acid metabolism			78
		4.6.1 Free amino acid pool			79
		4.6.2 Transamination			79
		4.6.3 Deamination			80
		4.6.4 Branched chain amino acids			82
		4.6.5 Glucose-alanine cycle			82
		4.6.6 Glutamine			82
		4.6.7 The urea cycle			85
	4.7	Key points	Homonos and regu		85
			areaustis are		
5	Carb	ohydrates			87
	5.1	Relevance of carbohydrates for sport and exercise			88
	5.2	Types and structure of carbohydrates			90
		5.2.1 Monosaccharides			90
		5.2.2 Disaccharides and polysaccharides	AMPK as a metal		91
	5.3	Metabolism of carbohydrates		Kay p	92
		5.3.1 Glycogenolysis			93
		5.3.2 Glycolysis	animuse y		95
		5.3.3 Lactate metabolism			98
		5.3.4 The 'link' reaction; production of acetyl-CoA	rigid to nottletted	1.1.8	98
		5.3.5 The TCA (or Krebs) cycle			98
		5.3.6 Electron transport chain			98
		5.3.7 Oxidative phosphorylation			100
		5.3.8 Calculation of ATP generated in glucose oxida	tion		101
		5.3.9 Overview of glucose oxidation		Hilleria	102
		5.3.10 Fructose metabolism			102
		5.3.11 Gluconeogenesis			102
		5.3.12 Glycogenesis			103
	5.4	Key points			107
6	Lipid				109
	6.1	Relevance of lipids for sport and exercise			110
	6.2	Structure of lipids			112
		6.2.1 Classification of lipids			112

viii CONTENTS

		6.2.2 Compound lipids	115
		6.2.3 Derived lipids	115
	6.3	Metabolism of lipids	115
		6.3.1 Lipolysis	115
		6.3.2 β-oxidation	118
		6.3.3 Ketone body formation	119
		6.3.4 Formation of fatty acids	119
		6.3.5 Triglyceride synthesis	122
	6.4	Key points	124
Th	ree	Metabolic Regulation in Sport and Exercise	127
7	Princ	ciples of metabolic regulation	129
	7.1	How are catabolic and anabolic reactions controlled?	130
	7.2	Hormones	130
	7.3	Peptide hormones, neurotransmitters and regulation	133
		7.3.1 Adrenaline activation of glycogenolysis	134
		7.3.2 Adrenaline activation of lipolysis	135
		7.3.3 Insulin activation of glycogen synthase	135
		7.3.4 Insulin inhibition of lipolysis	137
		7.3.5 Insulin stimulation of protein synthesis	137
	7.4	Steroid hormones and regulation	138
	7.5	Allosteric effectors	140
		7.5.1 Regulation of glycogen phosphorylase	140
		7.5.2 Regulation of PFK	140
		7.5.3 Regulation of PDH	140
		7.5.4 Regulation of CPT1	142
	76	7.5.5 AMPK as a metabolic regulator	142
	7.6	Key points	144
8	High.	intensity exercise	145
	8.1	Overview of energy production and metabolic regulation in high-intensity exercise	145
	0.1	8.1.1 Definition of high-intensity exercise	145
		8.1.2 Energy production during high-intensity exercise	146
		8.1.3 Evidence of energy sources used in HIE	148
		8.1.4 Metabolic regulation during high-intensity exercise	152
	8.2	Effects of exercise duration	152
	8.3	Effects of nutritional status	153
		8.3.1 Can nutritional ergogenic aids help HIE?	154
	8.4	Effects of training	155
	8.5	Mechanisms of fatigue	157
		8.5.1 Reduced ATP	158
		8.5.2 Reduced PCr	159
		8.5.3 Increased P _i	159
		8.5.4 Lactate and H ⁺	160
	8.6	Key points	161

CONTENTS	11
CONTENTS	14

9	Endu	rance exercise	163
	9.1	Overview of energy production and metabolic regulation in endurance exercise	164
		9.1.1 Definition and models of endurance exercise	164
		9.1.2 Energy production in endurance exercise	164
		9.1.3 Overview of metabolic regulation in endurance exercise	165
	9.2	Effects of exercise intensity	166
		9.2.1 CHO metabolism	166
		9.2.2 Lipid metabolism	168
	9.3	Effects of exercise duration	172
	9.4	Effects of nutritional status	174
		9.4.1 CHO-loading and muscle glycogen availability	174
		9.4.2 Fat-loading strategies	176
		9.4.3 Pre-exercise and during-exercise CHO ingestion	178
		9.4.4 Pre-exercise FFA availability	181
	9.5	Effects of training status	183
		9.5.1 CHO metabolism	183
		9.5.2 Lipid metabolism	184
		9.5.3 Protein metabolism	188
	9.6	Mechanisms of fatigue	189
	9.7	Key points	192
10	High	-intensity intermittent exercise	195
	10.1	Overview of energy production in intermittent exercise	196
		10.1.1 Definition and models of intermittent exercise	196
		10.1.2 Energy systems utilized in intermittent exercise	197
	10.2	Metabolic regulation in intermittent exercise	197
	10.3	Effects of manipulating work-rest intensity and ratio	202
	10.4	Effects of nutritional status	206
		10.4.1 Muscle glycogen availability	207
		10.4.2 Pre-exercise CHO ingestion	207
		10.4.3 CHO ingestion during exercise	209
	10.5	Muscle adaptations to interval training	210
		Mechanisms of fatigue	215
		10.6.1 Carbohydrate availability	216
		10.6.2 PCr depletion	217
		10.6.3 Acidosis	218
		10.6.4 Extracellular potassium	220
		10.6.5 Reactive oxygen species (ROS)	221
		10.6.6 P _i accumulation and impaired Ca ²⁺ release	223
	10.7	Key points	224
Re	ferenc	es and suggested readings	227
Ind	ndex		