silen mol

41
Monimizating Optical equivalent industrial should not should 11
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
<td

6 The Finite Tubular Source with Cylindrical Optics

xi

1

3

5

6

6

8

11

13

Preface

- 1. Nonimaging Optical Systems and Their Uses
 - 1.1 Nonimaging Collectors
 - 1.2 Definition of the Concentration Ratio; The Theoretical Maximum
 - 1.3 Uses of Concentrators
 - 1.4 Uses of Illuminators References
- 2. Some Basic Ideas in Geometrical Optics
 - 2.1 The Concepts of Geometrical Optics
 - 2.2 Formulation of the Ray-Tracing Procedure
 - 2.3 Elementary Properties of Image-Forming Optical Systems
 - 2.4 Aberrations in Image-Forming Optical Systems
 - 2.5 The Effect of Aberrations in an Image-Forming System on the

	Concentration Ratio		14
2.6	The Optical Path Length and Fermat's Principle		16
2.7	The Generalized Étendue or Lagrange Invariant and the		
	Phase Space Concept		18
2.8	The Skew Invariant		22
2.9	Different Versions of the Concentration Ratio		23
	Reference		23
Some	Designs of Image-Forming Concentrators		25
3.1	Introduction		25
3.2	Some General Properties of Ideal Image-Forming		
	Concentrators		25
3.3	Can an Ideal Image-Forming Concentrator Be Designed?		31
3.4	Media with Continuously Varying Refractive Indices		34
3.5	Another System of Spherical Symmetry		37
3.6	Image-Forming Mirror Systems	6.13	38
3.7	Conclusions on Classical Image-Forming Concentrators		40
	References		41

v

Contents

4.	Nonin	naging Optical Systems	43
	4.1	Limits to Concentration	43
	4.2	Imaging Devices and Their Limitations	44
	4.3	Nonimaging Concentrators	45
	4.4	The Edge-Ray Principle or "String" Method	47
	4.5	Light Cones	49
	4.6	The Compound Parabolic Concentrator	50
	4.7	Properties of the Compound Parabolic Concentrator	56
	4.8	Cones and Paraboloids As Concentrators	64
		References	67
5.	Devel	opments and Modifications of the Compound	
	Parab	olic Concentrator	69
	5.1	Introduction	69
	5.2	The Dielectric-Filled CPC with Total Internal Reflection	69
	5.3	The CPC with Exit Angle Less Than $\pi/2$	72
	5.4	The Concentrator for A Source at A Finite Distance	74
	5.5	The Two-Stage CPC	76
	5.6	The CPC Designed for Skew Rays	78
	5.7	The Truncated CPC	80
	5.8	The Lens-Mirror CPC	84
	5.9	2D Collection in General	8
	5.10	Extension of the Edge-Ray Principle	8
	5.11	Some Examples	8'
	5.12	The Differential Equation for the Concentrator Profile	89
	5.13	Mechanical Construction for 2D Concentrator Profiles	89
	5.14	A General Design Method for A 2D Concentrator with	
		Lateral Reflectors	92
	5.15	Application of the Method: Tailored Designs	98
	5.16	A Constructive Design Principle for Optimal Concentrators	96
	RZITAPA	References	97
	T		
).	Syster	ns	99
	61	The Concept of the Flow Line	90
	6.2	Lines of Flow from Lambertian Radiators: 2D Examples	100
	6.3	3D Example	109
	6.4	A Simplified Method for Calculating Lines of Flow	10
	6.5	Properties of the Lines of Flow	104
	6.6	Application to Concentrator Design	10
	6.7	The Hyperboloid of Revolution As A Concentrator	100
	6.8	Flaborations of the Hyperboloid, the Truncated Hyperboloid	100
	6.0	The Hyperboloid Combined with A Long	100
	6.10	The Hyperboloid Combined with Two Longos	10
	6 11	Conoralized Flow Line Concentrators with Refractive	100
	0.11	Components	109
	6 19	Hamiltonian Formulation	100
	6.12	Poisson Bracket Design Method	10:
	6.14	Application of the Poisson Breeket Method	110
	6.15	Multifeliote Reflector Regad Concentrators	120
	0.10	multionale-menector-based Concentrators	13

vi

×.

1

Contents

8.

	6.16	The Poisson Bracket Method in 2D Geometry	142
	6.17	Elliptic Bundles in Homogeneous Media	144
	6.18	Conclusion	155
		References	157
		Optics	110
7.	Conce	entrators for Prescribed Irradiance	159
	7.1	Introduction	159
	7.2	Reflector Producing A Prescribed Functional Transformation	160
	7.3	Some Point Source Examples with Cylindrical and	
		Rotational Optics	161
	7.4	The Finite Strip Source with Cylindrical Optics	162
	7.5	The Finite Disk Source with Rotational Optics	166
	7.6	The Finite Tubular Source with Cylindrical Optics	172
	77	Freeform Ontical Designs for Point Sources in 3D	173

- rieelorin Optical Designs for ronne Sources in SD References **Simultaneous Multiple Surface Design Method** Introduction 8.1 Definitions 8.2 Design of A Nonimaging Lens: the RR Concentrator 8.3 Three-Dimensional Ray Tracing of Rotational Symmetric 8.4 **RR** Concentrators . The XR Concentrator 8.5 Three-Dimensional Ray Tracing of Some XR Concentrators 8.6 The RX Concentrator 8.7 8.8 Three-Dimensional Ray Tracing of Some RX Concentrators The XX Concentrator 8.9 The RXI Concentrator 8.10 Three-Dimensional Ray Tracing of Some RXI Concentrators 8.11 Comparison of the SMS Concentrators with Other 8.12 Nonimaging Concentrators and with Image Forming
- TIO 178 181 181 182 184 189 192 194 195 198 201 202207

vii

200

		Systems	209
	8.13	Combination of the SMS and the Flow-Line Method	211
	8.14	An Example: the XRI _F Concentrator	212
		References	217
9.	Imagi	ng Applications of Nonimaging Concentrators	219
	9.1	Introduction	219
	9.2	Imaging Properties of the Design Method	220
	9.3	Results	225
	9.4	Nonimaging Applications	231
	9.5	SMS Method and Imaging Optics	233
		References	233
10.	Conse	quences of Symmetry (by Narkis Shatz and John C. Bortz)	235
	10.1	Introduction	235
	10.2	Rotational Symmetry	236
	10.3	Translational Symmetry	247
		References	263

۰.

	Global	Optimization of High-Performance Concentrators	
	(by Nar	kis Shatz and John C. Bortz)	1.8 2
	, 11.1	Introduction	11.8 2
	11.2	Mathematical Properties of Mappings in Nonimaging	
		Optics	2
	11.3	Factors Affecting Performance	onsO 2
	11.4	The Effect of Source and Target Inhomogeneities on the	
		Performance Limits of Nonsymmetric Nonimaging	
		Optical Systems	8.7 2
	11.5	The Inverse-Engineering Formalism	2
	11.6	Examples of Globally Optimized Concentrator Designs	1.5 2
		References	1.7
9	A Dara	diam for a Wave Description of Ontical Measuremen	nte 9
2.	19 1	Introduction	105 0
	19.1	The Van Cittert Zernike Theorem	•
	12.2	Measuring Radiance	
	12.0	Near-Field and Far-Field Limits	1.8
	12.4	A Wave Description of Measurement	2.8
	12.0	Focusing and the Instrument Operator	8.8
	12.0	Mossurement By Focusing the Comore on the Source	8.4
	12.1	Exportmental Test of Focusing	
	12.0	Conclusion	0.8
	12.9	References	8.6
		neierences	7.8
3.	Applic	ations to Solar Energy Concentration	
	13.1	Requirements for Solar Concentrators	
	13.2	Solar Thermal Versus Photovoltaic Concentrator	
		Specifications	
	13.3	Nonimaging Concentrators for Solar Thermal Application	ns å
	13.4	SMS Concentrators for Photovoltaic Applications	
	13.5	Demonstration and Measurement of Ultra-High Solar	
		Fluxes (C _g Up to 100,000)	.1.8
	13.6	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight	
	13.6 13.7	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials	
	13.6 13.7 13.8	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries	
	13.6 13.7 13.8 13.9	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space	
	13.6 13.7 13.8 13.9	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References	
	13.6 13.7 13.8 13.9	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References	
4.	13.6 13.7 13.8 13.9 Manuf	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References	
4.	13.6 13.7 13.8 13.9 Manuf 14.1	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References	
4.	13.6 13.7 13.8 13.9 Manuf 14.1 14.2	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References facturing Tolerances Introduction Model of Real Concentrators	
4.	13.6 13.7 13.8 13.9 Manuf 14.1 14.2 14.2	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References acturing Tolerances Introduction Model of Real Concentrators Contour Error Model	
4.	13.6 13.7 13.8 13.9 14.1 14.2 14.2 14.3 14.3	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References acturing Tolerances Introduction Model of Real Concentrators Contour Error Model The Concentrator Error Multiplier	
4.	13.6 13.7 13.8 13.9 14.1 14.2 14.2 14.3 14.3 14.3	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References Acturing Tolerances Introduction Model of Real Concentrators Contour Error Model The Concentrator Error Multiplier Sensitivity to Errors	
4.	13.6 13.7 13.8 13.9 13.9 14.1 14.2 14.2 14.3 14.3 14.4 14.5 14.5	Fluxes (C _g Up to 100,000) Applications Using Highly Concentrated Sunlight Solar Processing of Materials Solar Thermal Applications of High-Index Secondaries Solar Thermal Propulsion in Space References acturing Tolerances Introduction Model of Real Concentrators Contour Error Model The Concentrator Error Multiplier Sensitivity to Errors Conclusions	

5

APPENI	DICES	NDIX M The Concentrator Besign for Skew Rays	
APPENI	DIXA	Derivation and Explanation of the Étendue	
		Invariant, Including the Dynamical Analogy;	
		Derivation of the Skew Invariant	415
A.1	The g	generalized étendue	415
A.2	Proof	of the generalized étendue theorem	416
A.3	The n	nechanical analogies and liouville's theorem	418
A.4	Conve	entional photometry and the étendue	419
	Refer	ences	419
APPENI	DIX B	The Edge-Ray Theorem	421
B.1	Intro	duction	421
B.2	The C	Continuous Case	421
B.3	The S	Sequential Surface Case	426
B.4	The H	Flow-Line Mirror Case	427
B.5	Gene	ration of Edge Rays at Slope Discontinuities	429
B.6	Offen	ce Against the Edge-Ray Theorem	430
	Refer	ences	432
APPENI	DIX C	Conservation of Skew and Linear Momentum	433
C.1	Skew	Invariant	433
C.2	Lune	burg Treatment for Skew Rays	434
C.3	Linea	ar Momentum Conservation	435
C.4	Desig	n of Concentrators for Nonmeridian Rays	435
	Refer	ences	437
APPENI	DIX D	Conservation of Etendue for Two-Parameter	
	orpora	Bundles of Rays	439
D.1	Cond	itions for Achromatic Designs	441
D.2	Cond	itions for Constant Focal Length in Linear Systems	446
	Refer	ences	447
APPENI	DIX E	Perfect Off-Axis Imaging	449
E.1	Intro	duction	449
E.2	The 2	2D Case	450
E.3	The 3	BD Case	452
	Refer	ences	459
APPENI	DIX F	The Luneberg Lens	461
APPENI	DIX G	The Geometry of the Basic Compound Parabolic	
		Concentrator	467
APPENI	DIX H	The θ_i/θ_o Concentrator	471
APPENI	DIX I	The Truncated Compound Parabolic Concentrator	473
APPENI	DIX J	The Differential Equation for the 2D Concentrator	
		Profile with Nonplane Absorber	477
	Refer	ence	479
APPENI	DIX K	Skew Rays in Hyperboloidal Concentrator	481
APPENI	DIX L	Sine Relation for Hyperboloid/Lens Concentrator	483

.

.

APF	END	IX M The Concentrator Design for Skew Rays	485
	M.1	The Differential Equation	485
	M.2	The Ratio of Input to Output Areas for the Concentrator	486
	M.3	Proof That Extreme Rays Intersect at the Exit Aperture Rim	488
	M.4	Another Proof of the Sine Relation for Skew Rays	489
	M .5	The Frequency Distribution of h	490
Ind	ex		493

.

		APP
	acturing Tolerances Accord Accord Actor 7 arr	
	OIX K Skew Rays in Hyperboloidal Concentrator.	
	DIX L. Sime Relation for Hyperboloid/Lens Gammeidira	

