Contents

For	reword	xiii
Pre	eface	XV
1	Introduction	1
2	Theory of Optical Communications	11
	2.1 Review of Classical Information Theory	12
	2.1.1 Information and Entropy for Discrete Messages	12
	2.1.2 Information and Entropy for Continuous Messages 2.1.3 The Discrete Channel Model and the Capacity	14
	Theorem	15
	2.1.4 The Continuous Channel	17
	2.2 The Optical Channel Capacity: A Classical Approach	19
	2.3 The Optical Channel Capacity: A Quantum Approach	22
	2.3.1 The Capacity of the Quantum Optical Channel	22
	2.3.2 Quantum Limit and Bandwidth Expansion	25
	2.4 Efficiency of Binary Intensity Modulation with an Ideal	
	Photon Counter	28
	2.5 Efficiency of Coherent Optical Systems	31
	2.5.1 Semiclassical Analysis of the Heterodyne Receiver	31
	2.5.2 Quantum Analysis of the Heterodyne Receiver	34
	2.5.3 Semiclassical Analysis of the Homodyne Receiver	36
	2.6 Efficiency of a Coherent Amplifier Followed by a Photon	
	Counter	38
	References	40
		vii

viii CONTENTS

3	Fiber Devices for Optical Communication Systems	42
	3.1 Single-Mode Silica Fibers	43
	3.1.1 Single-Mode Fiber Attenuation	46
	3.1.2 Single-Mode Fiber Chromatic Dispersion	48
	3.1.3 Optical Field Polarization Evolution	52
	3.1.4 Polarization-Maintaining Fibers	58
	3.1.5 Nonlinear Optical Fiber Propagation	59
	3.2 Erbium-Doped Fibers Amplifiers	67
	3.2.1 Structure of an Erbium-Doped Fiber Amplifier 3.2.2 Erbium-Doped Fiber Amplifier Gain and Noise	71
	Performance	73
	3.3 Polarization Controllers	80
	3.3.1 Polarization Control Element	81
	3.3.2 Control Algorithm	83
	References	83
4	Integrated Devices for Optical Communication Systems	91
		02
	4.1 Semiconductor Laser	93
	4.1.1 Semiconductor Laser Principle	93
	4.1.2 Laser Structure for Single-Mode Operation	103
	4.1.3 Noise Characteristics Under Continuous-Wave	110
	Operation 1.1.4 Madalatian and Balan Operation Change in the	110
	4.1.4 Modulation and Pulse Operation Characteristics	117
	4.1.5 External-Cavity Laser	123
	4.1.6 Advanced Structures	128
	4.2 Semiconductor Optical Amplifiers	138
	4.3 Optoelectronic Modulators	148
	4.3.1 Electro-Optic Devices	149
	4.3.2 Acousto-Optic Devices	162
	4.4 Photodetectors for Optical Communications	168
	4.4.1 The Semiconductor Photodiode	169
	4.4.2 Efficiency of Semiconductor Photodetectors	170
	4.4.3 Photodiode Response Time	172
	4.4.4 Noise in Optical Detectors	174
	4.4.5 PIN Photodiode	176
	4.4.6 Avalanche Photodiode	177
	4.4.7 Photodiode Materials	180
	4.4.8 Advanced Structures	181
	References	182

5 Direct Detection Opti	ical Communication Systems	193
5.1 IM-DD Systems		194
5.2 IM-DD Systems	Performance	199
5.2.1 Shot Noise	and Multiplication Noise	200
5.2.2 Dark-Curre	ent Noise	202
5.2.3 Thermal-Ci	ircuit Noise	203
5.2.4 Performand	ce Evaluation of Operative Systems	204
5.2.5 Imperfect N	Modulation and Intersymbol Interference	207
5.2.6 Receiver D	ynamic Range	210
5.3 IM-DD Systems E	Employing Optical Amplifiers	211
5.3.1 System Struc	cture and Design	212
	e of IM-DD Systems in the Presence	
	mplifiers: Ideal Propagation	215
5.3.3 Performance	e of IM-DD Receivers in the Presence	
of Optical A	Implifiers: Nonlinear Propagation	221
5.4 Direct Detection F	PPM Systems	228
5.4.1 Error Proba	bility for Direct Detection PPM Receiver	229
	n Optimum Direct Detection PPM	
Receiver		233
5.4.3 Performance	e of Direct Detection PPM System	235
References		239
6 Coherent Systems: Stru	ucture and Ideal Performance	242
6.1 Coherent Optical	Systems Structure	244
6.1.1 Single-Brand		245
6.1.2 Balanced Re		247
	Diversity Receiver	248
6.1.4 Phase Diver		250
	Using PSK Modulation	245
	ch PSK Homodyne Receiver	256
	ch PSK Heterodyne Receiver	259
	er Using a Reference Carrier	260
	Using DPSK Modulation	265
	ch DPSK Heterodyne Receiver	270
	-Diversity DPSK Heterodyne Receiver	270
	rsity DPSK Homodyne Receiver	271
	Using ASK Modulation	272
	ch ASK Heterodyne Receiver	276
	-Diversity ASK Heterodyne Receiver	278
	rsity ASK Homodyne Receiver	278
	Using FSK Modulation	279
6.5.1 Wide-Devia	tion FSK Heterodyne Receiver	284

x CONTENTS

	6.5.2 Narrow-Deviation FSK Heterodyne Receiver	288
	6.6 Coherent Systems Using Polarization Modulation	292
	6.6.1 Heterodyne Receiver with Optical Polarization	
	Control	294
	6.6.2 Heterodyne Receiver with Electronic Polarization	
	Control	295
	6.6.3 Heterodyne Receiver Based on Differential Stokes	•••
	Parameters Detection	298
	6.6.4 Homodyne Receivers	300
	6.7 Systems Using Polarization Scrambling	303
	6.8 Performance Comparison Among Different Systems	307
	References	309
7	Performance Degradation Sources in Coherent Optical Systems	314
	7.1 Coherent Receiver Structure and Related Noise Effects	316
	7.1.1 Single-Branch Homodyne Receiver	317
	7.1.2 Single-Branch Heterodyne Receiver	318
	7.2 Performance Degradation Induced by Laser Phase Noise	320
	7.2.1 Homodyne PSK Receiver	322
	7.2.2 Heterodyne PSK Receiver	330
	7.2.3 Heterodyne DPSK Single-Branch Receiver	332
	7.2.4 Heterodyne ASK Single-Branch Receiver	336
	7.2.5 Heterodyne FSK Single-Branch Receiver	343
	7.2.6 Polarization-Modulated Systems	346
	7.2.7 Phase Noise Sensitivity Comparison Among	216
	Coherent Systems	346
	7.3 Performance Degradation Induced by Laser Intensity Noise	347
	7.4 Performance Degradation Induced by Fiber Dispersion	352
	7.5 Performance Degradation Induced by Nonlinear Effects in	256
	Fiber Propagation	356
	7.5.1 Effect of Stimulated Brillouin Scattering	357
	7.5.2 Effect of Kerr Nonlinearity in Conjunction with	200
	Fiber Dispersion	360
	7.6 Performance Degradation Induced by ASE Noise of	
	Optical Amplifiers	365
	7.6.1 Coherent System Using Optical Amplifiers with	136
	Ideal Fiber Propagation	368
	7.6.2 Coherent System Using Optical Amplifiers with	(10)
	Nonlinear Fiber Propagation	370
	References	374

8	Multilevel Coherent Optical Systems	380
	8.1 Instantaneous Multilevel Modulation 8.2 Quadrature Multilevel Modulations	381 385
	8.2.1 N-PSK Modulation	386
	8.2.2 N-QAM Modulation 8.2.3 N-4QSK Modulation	391 395
	8.2.4 N-4Q-QAM Modulation	402
	8.2.5 Phase Noise Influence on Quadrature Modulation	102
	Formats	405
	8.3 Polarization-Modulated Multilevel Systems	407
	8.3.1 Constant Power Modulation	409
	8.3.2 Variable Power Modulation	413
	8.3.3 Phase Noise Influence on Multilevel	
	Polarization-Modulated Systems	415
	8.4 Power-Efficient Multilevel Modulation Formats	417
	8.4.1 Multilevel Wide Deviation Frequency Shift Keying	417
	8.4.2 Combined WD-FSK and N-4QSK Modulation	421
	8.4.3 Phase Noise Influence on Multifrequency Modulation Formats	423
		423
	8.5 Comparison Among Instantaneous Multilevel Modulation Formats	424
	References	426
	References	420
9	Multichannel Optical Systems	429
	9.1 WDM Optical Transmission Systems	430
	9.1.1 Multiplexers and Demultiplexers for WDM Systems	431
	9.1.2 Frequencies Stabilization in Densely Spaced	
	WDM Systems	433
	9.1.3 Crosstalk in Densely Spaced WDM Systems	435
	9.2 FDM Optical Transmission Systems	440
	9.2.1 Channel Interference in FDM Systems	443
	9.2.2 Impact of Nonlinear Effects in Fiber Propagation	
	on Densely Spaced WDM and FDM Systems	450
	9.3 SCM Optical Transmission Systems	452
	9.3.1 Intensity Modulation–Direct Detection SCM Systems	453
	9.3.2 Optical Coherent SCM Systems	457
0	Present-Day Systems Implementations	469
	10.1 Single Channel Systems	470
	10.1.1 IM-DD Systems	471
	10.1.2 Coherent Systems	473

10.2	Long-Distance Systems Using Optical Amplifiers	482
	10.2.1 IM-DD Systems	482
	10.2.2 Coherent Systems	484
	10.2.3 Soliton Systems	484
10.3	Multilevel Systems	488
	10.3.1 IM-DD Multilevel Systems	490
	10.3.2 Coherent Multilevel Systems	490
10.4	Frequency-Multiplexed Systems	493
	10.4.1 Point-to-Point Frequency-Multiplexing	
	Experiments	493
	10.4.2 An Example of Optical Passive Star Network Adopting FDM Technique	495
	10.4.3 An Example of Optical Passive Star Network	
	Using Direct-Detection Single-Filter FSK and	
	WDM Technique	500
	10.4.4 An Example of a Coherent Optical CATV	
	Network Based on FDM Technique	502
	10.4.5 An Example of Coherent Optical CATV Network	
	Based on SCM Technique and Coherent Optical	
	Detection	504
10.5	Field Trials	505
10.5	Ticlu Titals	505
Appendix	A: The Marcum Q Function	516
Annendix	B: Distribution of Hermitian Quadratic Forms of	
Appendix	Gaussian Random Variables	520
Appendix	C: The Cauchy Equation and Its Approximations	523
Appendix	D: Principal States of Polarization in a Single-Mode	
	Fiber	530
Index		535
mucx		333

The state of the second state of the second second