

		-
1 The	rate-equation model for the laser	5
1.1	Absorption, stimulated emission and spontaneous emission	5
1.2	Calculation of the B coefficient	7
1.3	The laser	9
2 The	interaction of a system of two-level atoms with the electromagnetic field	15
2.1	The interaction Hamiltonian in the dipole approximation	15
2.2	The two-level atom and its analogy with spin 1/2	17
2.3	The rotating-wave approximation. Optical Bloch equations	19
2.4	The Bloch vector and its nutation	21
3 The	Maxwell–Bloch equations	29
3.1	The Maxwell equations. Paraxial and slowly varying	
1	envelope approximations	29
3.2	The Maxwell–Bloch equations. The plane-wave approximation	33
3.3	Self-induced transparency, the sine-Gordon equation and solitons	34
3.4	Superradiance and superfluorescence	37
4 Inclu	usion of the irreversible processes in the atomic equations	43
4.1	Irreversible transition processes between the two levels	43
4.2	Irreversible decay of the atomic polarization	45
4.3	Damped Rabi oscillations and the approach to a stationary state	47
4.4	The complete Maxwell–Bloch equations	48
5 Prop	pagation in irreversible Maxwell–Bloch equations	49
5.1	Linear theory	49
5.2	Saturation and power broadening	53
5.3	Nonlinear propagation for a monochromatic input field: The role of	
	saturation and nonlinear phase shift	55
5.4	Background linear dispersion and absorption	57

.

Contents

viii

	6 Ontical nonlinearities. Materials with guadratic nonlinearities	(0)
	6 Optical nonlinearities. Materials with quadratic nonlinearities	60
	6.1 Linear and nonlinear polarization	61
	6.2 Media with a quadratic nonlinearity	03
	6.3 The stationary state in the plane-wave approximation	67
	7 Optical nonlinearities. Materials with cubic nonlinearities	74
	7.1 The Kerr medium nonlinearity. Self-phase modulation	74
7	7.2 Temporal Kerr solitons	76
	7.3 Spatial Kerr solitons	78
	7.4 The case of three frequency bands. Cross-phase modulation and	
	four-wave mixing	79
	7.5 Optical phase conjugation	81
	8 Optical resonators. The planar ring cavity. Empty cavity. Linear cavity	85
	8.1 Optical cavities	85
	8.2 Beam splitters	86
	8.3 The planar ring cavity. Boundary condition, input and output fields.	
	Transmission of the cavity	87
	8.4 The empty cavity	90
	8.5 The linear cavity. Frequency pulling and pushing, mode splitting	92
	9 A nonlinear active ring cavity: the ring laser, stationary states	95
	9.1 Calculation of the nontrivial stationary solutions	95
	9.2 The low-transmission limit	99
	9.3 The analogy with second-order phase transitions	101
	3 The Maxwell-Bloch equations	
	10 The adiabatic elimination principle	105
	10.1 General formulation of the principle	105
	10.2 Adiabatic elimination of the atomic polarization in the Bloch equations.	
	Limits of the optical pumping between two levels	107
	10.3 The three-level optical-pumping scheme	108
	10.4 The four-level optical-pumping scheme	110
	11 A nonlinear passive ring cavity: optical bistability	112
	11.1 Absorptive optical bistability	112
	11.2 Dispersive optical bistability	117
	11.3 Optical bistability in two-level systems: the general case	120
	11.4 Functionalities of optically bistable systems	123
	12 Modal equations for the ring cavity. The single-mode model	126
	12.1 Transformation of coordinates and transformation	
	of variables. Modal equations	127
	12.2 Introduction of the low-transmission approximation	131
	12.3 The single-mode model	132
	12.4 Stationary solutions of the single-mode model	134

Contents **13 Single- and two-mode models** 13.1 A laser with an injected signal 13.2 A laser with a saturable absorber

135

135

139

142

144

ix

13.3 The cubic model for dispersive optical bistability
13.4 A model for the degenerate optical parametric oscillator (and harmonic generation in a cavity) and its stationary solutions

14 Nonli	near dynamics in Fabry–Perot cavities	150
14.1	Modal equations for the Fabry–Perot cavity	151
14.2	The single-mode model for the Fabry–Perot cavity. Spatial hole-burning	156
14.3	A more convenient set of modal equations	159
14.4	Again the ring cavity: simplified forms of the models	163
14.5	The case of an atomic sample of length much shorter than the	
	wavelength: difference-differential equations	165
15 Inhor	nogeneous broadening	170
15.1	Multimode dynamical equations	170
15.2	The single-mode model. The stationary state for the laser.	
	Spectral hole-burning	172
	21.3 Adiabatic elimination of the industriantient transformer of the	
16 The s	emiconductor laser	177
16.1	Some elements of semiconductor physics	177
16.2	The p-n junction	179
16.3	The double heterojunction. Optical confinement	180
16.4	Band structure	182
16.5	Dynamical equations	184
16.6	Vertical-cavity surface-emitting lasers	190
17 Laser	's without inversion and the effects of atomic coherence	192
17.1	Model equations	192
17.2	Coherent population trapping	194
17.3	Electromagnetically induced transparency	196
17.4	Amplification without inversion	199
17.5	Lasing without inversion	202
	Part II Dynamical phenomena, instabilities, chaos	205
Intro	duction to Part II	207
18 Some	e general aspects in nonlinear dissipative dynamical systems	209
18.1	Stationary solutions and their stability	210
18.2	Attractors and repellers; bistability and multistability	212
18.3	Other kinds of attractors: limit cycles, tori, strange attractors;	
	deterministic chaos; generalized multistability	213
18.4	Transitions induced by the variation of a control parameter	214

Contents

Х

	19	Special limits in the single-mode model	219
		19.1 Classification of lasers	219
		19.2 Adiabatic elimination of the atomic variables (the good-cavity limit)	220
		19.3 Adiabatic elimination of the atomic polarization: the single-mode	
		rate-equation model	225
		19.4 Adiabatic elimination of the electric field (the bad-cavity limit)	232
		7.1 The Kerr medium nonlinearity. Self-phase modulation	
	20	The linear-stability analysis of the Maxwell–Bloch equations	233
		20.1 Coupled multimodal equations for field and atomic variables.	
		Single-mode and multimode instabilities	234
		20.2 Multimode instabilities and their features	238
		20.3 Single-mode instabilities and their features	241
		20.4 The general connection between single-mode and multimode instabilities	244
		20.5 The resonant case, amplitude and phase instabilities	244
	21	Adiabatic elimination in the complete Maxwell–Bloch equations	247
		21.1 The rate-equation approximation	247
		21.2 Adiabatic elimination of the atomic polarization and comparison with the	
		rate-equation approximation	248
		21.3 Adiabatic elimination of the atomic variables	249
	22	Dynamical aspects in the laser	252
		22.1 Linear-stability analysis of the trivial stationary solution	
		in the standard laser	252
		22.2 Linear-stability analysis of the trivial stationary solution in the laser	101
		without inversion	254
		22.3 Class-C lasers: the analogy with the Lorenz model and optical chaos	255
		22.4 The resonant single-mode laser instability	257
		22.5 The multimode amplitude instability	261
		22.6 The multimode phase instability	265
		22.7 An ultrathin medium: the multimode amplitude instability in the	108
		Fabry-Perot laser	269
		17.4/ Amplification without inversion	
202.	23	Single-mode and multimode operation in inhomogeneously broadened lasers	275
		23.1 Multimode and single-mode instabilities	276
		23.2 Mode-locking	285
	24	Dynamical aspects in optical bistability	288
	1	24.1 Critical slowing down	288
		24.2 Multimode instabilities in optical bistability	291
		24.3 Single-mode instabilities in optical histability	300
		2 no single mode mouonnes mopheur orstaonney	500
	25	Self-pulsing in other optical systems	306
		25.1 A laser with an injected signal. Frequency locking and	
		coexisting attractors	306

xi	Contents	
_		
	25.2 A laser with a saturable absorber. Repetitive passive Q-switching 25.3 A degenerate optical parametric oscillator, period doubling	309
	and chaos	313
	Part III Transverse optical patterns	317
	B.3 The quintic case	
	Introduction to Part III	319
2	6 Gaussian beams and modes of cavities with spherical mirrors	323
	26.1 Gaussian-shaped beams	324
	26.2 Higher-order modes	327
	26.3 Gaussian modes in a cavity with spherical mirrors. The case of	
	Fabry–Perot cavities	332
	26.4 The <i>ABCD</i> matrix method	334
	26.5 Gaussian modes in a cavity with spherical mirrors. The case	226
	of ring cavities	336
	26.6 Mode frequencies	331
	7. Conoral foaturos about ontical nattorn formation in planar cavitios	242
4	27.1 Dynamical models with diffraction	342
	27.1 Dynamical models with unnaction 27.2 Systems with translational symmetry. The mechanisms for	542
	nattern formation	345
	27.3 Pattern formation in optical parametric oscillators	353
	27.4 Systems with a single feedback mirror	356
	27.5 The analogy with hydrodynamics. Vortices and other defects	359
	particular, the enset of instabilities that lead to phenomena of spontaneous pulsat	
2	28 The Lugiato–Lefever model	363
	28.1 Modulational instability and the patterns arising from it	364
	28.2 The temporal version of the LL model and its application	
	perspectives	370
	ctronics and nonlinear optics. The natural attention to the standard laser is ext	
2	29 Spatial patterns in cavities with spherical mirrors	378
	29.1 Modal equations and the single-longitudinal-mode model	379
. 315	29.2 The single-mode Gaussian model	382
	29.3 The multimodal transverse regime and cooperative frequency	204
	locking in the laser	384
	29.4 Laser patterns from frequency-degenerate families of modes.	
	Spontaneous breaking of the cylindrical symmetry.	200
	Phase-singularity crystals	200
2	30 Cavity solitons	303
	30.1 Localized structures in optics	394
	30.2 Generation and control of cavity solitons	398
	30.3 Cavity solitons in semiconductor microresonators	402
	30.4 The "cavity-soliton laser"	409

Contents

XII

3241

413 413 414

417

Appendix F The exact boundary of the Risken–Nummedal–Graham–Haken instability 418 Appendix G Nonlinear analysis of the roll solution 419 References 425 Index 447 27.3 Patrient for mution du butinitientenit medifiliedese-vont.1.1.55 29 Spatial patterns in cavities with spherical mirrors resultored vorde? -29.4 Laser patterns from frequency-degenerate families of pickes. .30.1. Localized structures in optics