Contents

In	trodu	ction				XX
			Abolt treatment with the present of the companies land.			
1	The	Physics	of Fluids]
	1.1	The liqu	id state			1
	3.5	1.1.1	The different states of matter: model systems and real media			2
		1.1.2	The solid-liquid transition: a sometimes nebulous boundary			5
	1.2	Macrosc	opic transport coefficients			5
		1.2.1	Thermal conductivity			6
		1.2.2	Mass diffusion			11
	1.3	Microsco	opic models for transport phenomena			13
		1.3.1	The random walk			13
		1.3.2	Transport coefficients for ideal gases			15
		1.3.3	Diffusive transport phenomena in liquids			19
	1.4	Surface	effects and surface tension			21
	212	1.4.1	Surface tension			21
		1.4.2	Pressure differences associated with surface tension			23
		1.4.3	Spreading of drops on a surface – the idea of wetting			25
		1.4.4	Influence of gravity			27
		1.4.5	Some methods for measuring the surface tension			29
		1.4.6	The Rayleigh–Taylor instability			31
	1.5	Scatterin	ng of electromagnetic waves and particles in fluids			33
		1.5.1				33
		1.5.2	Elastic and inelastic scattering			34
		1.5.3	Elastic and quasi elastic scattering of light: a tool for studying the structure and diffusive transp	port in liq	uids	37
		1.5.4	Inelastic scattering of light in liquids			4(
	1A	Appendi	x - Transport coefficients in fluids			42
2	11					
2	Mon	ientum	Transport Under Various Flow Conditions			43
	2.1	Diffusive	e and convective transport of momentum in flowing fluids			43
		2.1.1	Diffusion and convection of momentum: two illustrative experiments			43
		2.1.2	Momentum transport in a shear flow – introduction of the viscosity			45
	2.2	Microsco	opic models of the viscosity			48
		2.2.1	Viscosity of gases			48
		2.2.2	Viscosity of liquids			49
		2.2.3	Numerical simulation of molecular trajectories in a flow			5
	2.3	Compar	ison between diffusion and convection mechanisms			52
		2.3.1	The Reynolds number			52
		2.3.2	Convective and diffusive mass, or thermal energy, transport			53
	2.4		ion of various flow regimes			55
		2.4.1	Flows in a cylindrical tube: Reynolds' experiment			56
			Various flow regimes in the wake of a cylinder			5
		2.4.3	Flow behind a sphere			58

3	Kine	matics	of Fluids		60
	2 1	Descript	ion of the motion of a fluid		60
	3.1	3.1.1	Characteristic linear scales and the hypothesis of continuity		60
		3.1.2	Eulerian and Lagrangian descriptions of fluid motion		61
		3.1.3	Acceleration of a particle of fluid		61
		3.1.4	Streamlines and stream-tubes, trajectories and streaklines		63
	2.2		ations in flows		64
	3.2	3.2.1	Local components of the velocity gradient field		64
		3.2.2	Analysis of the symmetric component of the rate of strain tensor: pure strain		65
			Antisymmetric component of the tensor of the rate of deformation: pure rotation		68
		3.2.4	Application		70
			Case of large deformations		71
	3.3				72
	5.5	3.3.1			73
					73
			D		75
	2.4				
	3.4				75
		3.4.1	Introduction and significance of the stream function		75
		3.4.2			77
					79
	3.5	2 2 2			80
		3.5.1	Visualization of flows		81
		3.5.2	Concentration measurements		83
					83
		3.5.4	Measurements of the velocity field and of velocity-gradients in a flowing fluid		86
4	Dyna	amics of	f viscous fluids: rheology and parallel flows		90
	4.1	Surface			90
		4.1.1			90
		4.1.2	Characteristics of the viscous shear stress tensor		92
			The viscous shear-stress tensor for a Newtonian fluid		93
	4.2				95
	1.2	4.2.1			95
			Navier–Stokes equation of motion for a Newtonian fluid		97
			Euler's equation of motion for an ideal fluid		97
			Dimensionless form of the Navier–Stokes equation		98
	4.3		y conditions for fluid flow		98
	4.5		D 1 1.1 11		98
		4.3.1			
	1.1	4.3.2			99
	4.4				101
			Measurement of rheological characteristics		101
			Time-independent non-Newtonian fluids		102
					106
			Complex viscosity and elasticity of viscoelastic fluids		108
				Description of various	111
			Elongational viscosity		113
		4.4.7			114
	4.5				115
		4.5.1	Navier-Stokes equation for one-dimensional flow		115

				Contents	ix
			a 1		116
		4.5.2	Couette flow between parallel planes		116
		4.5.3	Poiseuille-type flows		117
		4.5.4	Oscillating flows in a viscous fluid		120
		4.5.5			124
		4.5.6	Cylindrical Couette flow		125
	4.6	Simple o	ne-dimensional, steady state flows of non-Newtonian fluids		127
		4.6.1	Steady-state Couette plane flow		128
		4.6.2			128
		4.6.3	Velocity profiles for simple rheological behavior		130
		4.6.4	Flow of a viscoelastic fluid near an oscillating plane		132
	4A	Appendi	x - Representation of the equations of fluid mechanics in different systems of coordinates		134
		4A.1	Representation of the stress-tensor, the equation of conservation of mass and the Navier-Stokes		
			equations in Cartesian coordinates (x, y, z)		134
		4A.2	Representation of the stress-tensor, the equation of conservation of mass, and the Navier-Stokes		
		***************************************	equations in cylindrical coordinates (r, φ, z)		134
		4A.3	Representation of the stress-tensor, the equation of conservation of mass, and the Navier-Stokes		
			equations in spherical polar coordinates (r, θ, φ)		135
	Ever	cises			136
					150
-	Cons	ervatio	n Laws		138
	5 1	Equation	of conservation of mass		138
	5.1	-			139
	5.2	5.2.1			139
					139
		5.2.2			
	5.3		servation of kinetic energy; Bernoulli's Equation		142
		5.3.1	The conservation of energy for a flowing incompressible fluid with or without viscosity		143
		5.3.2	Bernoulli's equation and its applications		146
		5.3.3	Applications of Bernoulli's equation		147
	5.4		ions of the laws of conservation of energy and momentum		152
		5.4.1	Jet incident onto a plane		152
		5.4.2			154
		5.4.3	Force on the walls of an axially symmetric conduit of varying cross-section		157
		5.4.4	Liquid sheets of varying thickness: the hydraulic jump		158
	Exer	cises			164
,	D .	. 1 171			
-	Poter	ntial Flo			166
	6.1	Introduc			166
	6.2	Definitio	ns, properties and examples of potential flow		167
		6.2.1	Characteristics and examples of velocity potentials		167
		6.2.2	Uniqueness of the velocity potential		168
		6.2.3	Velocity potentials for simple flows and combinations of potential functions		170
		6.2.4	Evamples of simple notantial flaves		174
	6.3		oting on an abstacle in notantial flavo		180
	0.5	6.3.1	Two dimensional flores		
		6.3.2	Added mass offerts for a three dimensional hadron density a section in an ideal facil		181
	6.1				184
	6.4		urface waves on an ideal fluid		187
		6.4.1	Swell, ripples and breaking waves		187
		6.4.2	Trajectories of fluid particles during the passage of a wave		191
		6.4.3	Solitons		192
		6.4.4	Another example of potential flow in the presence of an interface: the Taylor bubble		193

	0	
X	Conten	t c
Λ	OUTLIGHT	ι

	6.5	Electrica	l analog for two-dimensional potential flows	19
		6.5.1	Direct analog	19:
		6.5.2	Inverse analog	19:
	6.6	Complex	x velocity potential	19
		6.6.1	Definition of the complex potential	19
		6.6.2	Complex velocity potential for several types of flow	19
		6.6.3	Conformal mapping	199
	6A	Appendi	x: Velocity potentials and stream functions	20
		6A.1	Velocity potentials and stream functions for two-dimensional flows	20
		6A.2	Derivation of the velocity components from the stream function	20'
		6A.3	Derivation of the velocity components from the velocity potential function	20'
	Exer	cises		20'
7	Vorti	city, Vo	rtex Dynamics and Rotating Flows	21
	7.1	Vorticity	: its definition, and an example of straight vortex filaments	21
	,	7.1.1	The concept of vorticity	21
			A simple model of a line vortex: the Rankine vortex	21
		7.1.3	Electromagnetic analogies	21:
	7.2			213
	7.2		cs of the circulation of the flow velocity	213
		7.2.1	Kelvin's theorem: conservation of the circulation	
			Sources of circulation	22
	7.3		cs of vorticity Transport equation for vorticity, and its consequences	22
		7.3.1	Transport equation for vorticity, and its consequences	22
		7.3.2		23
	7.4	A few ex	amples of distributions of vorticity concentrated along singularities	23
		7.4.1	Vorticity concentrated along specific lines	23
		7.4.2	Dynamics of a system of parallel-line vortices	23.
		7.4.3	Vortex rings	23
	7.5	Vortices,	vorticity and movement in air and water	24
		7.5.1	Thrust due to an emission of vortices	24
		7.5.2	The effects of lift	24
		7.5.3	Lift and propulsion	24
	7.6	Rotating	fluids	24
		7.6.1		24
			Flows at small Rossby numbers	25
			Waves within rotating fluids	25
			The effect of viscosity near the walls: the Ekman layer	26
	7.7		, rotation and secondary flows	26
	/ • /	7.7.1	Secondary flows due to the curvature of channels or due to channels with a free surface	26
		7.7.2		26
			Secondary flows associated with Ekman layer effects	26
	7.			
	7A		x - An almost perfect fluid: superfluid nellum	27
		7A.1	Octicial considerations	27
			1 wo-mula model for superfluid neman	27
		7A.3	Experimental evidence for the existence of a superfluid component which flows without any	1 111
			dissipation	27
		7A.4	Superfluid helium: a quantum fluid	27.
		7A.5	Experiments involving superfluid vortices	27.
	Exer	rcises		27

				Contents
11251-	Parallel	Flows – Lubrication Approximation		
uasi				
8.1		on approximation Quasi-parallel flows		
	8.1.1	Assumptions of the lubrication approximation		
	8.1.2	Non-stationary effects		
	8.1.3	Equations of motion in the lubrication approximation		
	8.1.4	An example of the application of the equation for lubrication: stationary flow be	transam trans	
	8.1.5	moving planes making a small angle to each other	tween two	
	016			
	8.1.6	Flow of a fluid film of arbitrary thickness		
	8.1.7	Flow between two eccentric cylinders with nearly equal radii		
	8.1.8	Lubrication and surface roughness		
8.2		quid films having a free surface: hydrodynamics of wetting		
	8.2.1	Dynamics of thin liquid films, neglecting surface-tension effects		
	8.2.2	Dynamic contact angles		
	8.2.3	Dynamics of the spread of droplets on a flat surface		
	8.2.4	Flows resulting from surface-tension gradients: the Marangoni effect		
8.3	Falling lie	quid cylindrical jet		
	8.3.1	Stable flow regime		
	8.3.2	Capillary effects and Rayleigh-Plateau instability of the jet		
Exerc	cises			
71	-4 T	Darmalda Mumban		
lows	at Low	Reynolds Number		
9.1	Flows at	small Reynolds number		
	9.1.1	Physical meaning of the Reynolds number		
	9.1.2	Examples of flows at low Reynolds number		
	9.1.3	Some important characteristic		
9.2	Equation	of motion at low Reynolds number		
	9.2.1	Stokes equation		
	9.2.2	Some equivalent forms of the Stokes equation		
	9.2.3	Properties of the solutions of the Stokes equation		
	9.2.4	Dimensional arguments for low Reynolds number flows		
9.3	Forces an	d torques acting on a moving solid body		
	9.3.1	Linearity of the equations governing the velocity of the solid body and the forces	acting on it	
	9.3.2	The effect of the symmetry properties of solid bodies on the applied forces and to		
	9.3.3	Propulsion at low Reynolds numbers	719400	
9.4		-velocity motion of a sphere in a viscous fluid		
7.7	9.4.1	The velocity field around a moving sphere		
	9.4.2	Force acting on a moving sphere: the drag coefficient		
	9.4.3	Generalization of the solution of the Stokes equation to other experiments		
0.5				
9.5		ns of the Stokes description at low Reynolds numbers		
	9.5.1	Oseen's equation Foress on an infinite singular culinder in a uniform flow (D. (1)		
	9.5.2	Forces on an infinite circular cylinder in a uniform flow ($Re \ll 1$)		
9.6		s of suspensions		
	9.6.1	Rheology of suspensions		
	9.6.2	Sedimentation of particles in suspension		
9.7	Flow in p	orous media		
	9.7.1	A few examples		
	9.7.2	Parameters characterizing a porous medium		

		9.7.3	Flow in saturated porous media–Darcy's Law		34
		9.7.4	Simple models of the permeability of porous media		35
		9.7.5	Relationship between the electrical conductivity and the permeability of porous media	5	35
		9.7.6	Flory of immissible fluids in a porque medium		35
	Exerc		Flow of infiniscible fluids in a porous medium		36
10	_	1.00			
10	Coupl	ed Tran	sport. Laminar Boundary Layers		3
	10.1	Introduct			3
	10.2	Structure	of the boundary layer near a flat plate in uniform flow		3
	10.3	Equations	of motion within the boundary layer - Prandtl theory		3
		10.3.1	Equations of motion near a flat plate		3
		10.3.2	Transport of vorticity in the boundary layer		3
		10.3.3	Self-similarity of the velocity profiles in the boundary layer for the case of uniform, co	onstant,	
			external velocity		3
	10.4	Velocity r	orofiles within boundary layers		3
		10.4.1	Blasius equation for uniform external flow along a flat plate		3
		10.4.2	Valority profiles the colution of Placine's equation		3
		10.4.3	Existing of force on a flat plate in uniform flow		3
		10.4.4	Thicknesses of the boundary layers		3
		10.4.5	Hydrodynamic stability of a laminar boundary layer – transition to turbulence		3
	10.5		boundary layer in the presence of an external pressure gradient: boundary layer separati	on	3
	10.5		Simplified physical treatment of the problem	011	3
		10.5.1			3
		10.5.2	Self-similar velocity profiles – flows of the form $U(x) = C x^m$		
		10.5.3	Boundary layers of constant thickness		3
					3
			Practical consequences of boundary layer separation		3
	10.6		mics and boundary layers		3
		10.6.1	Control of boundary layers on an airplane wing		3
		10.6.2	Aerodynamics of road vehicles and trains		3
		10.6.3	Aerodynamics of other land-based vehicles		3
		10.6.4	Active and reactive control of the drag force and of the lift		3
	10.7	Wake and	l laminar jet		3
		10.7.1	Equation of motion of the wake		3
		10.7.2	Drag force on a body – relationship with the velocity in the wake		3
		10.7.3	Two-dimensional laminar jet		1
	10.8	Thermal	and mass boundary layers		3
		10.8.1			3
		10.8.2	Concentration boundary layers, polarography		3
		10.8.3	Taylor dispersion		4
	10.9	Flames			4
			Flames, mixing and chemical reactions		2
			I aminor diffusion flames		4
		10.9.3	Premived flames		4
		10.9.4	Instability of a plane premixed flame		4
	Even				
	Exerc	1868			4
11	Hydro	odynami	ic instabilities		4
	11.1	7/5/9/1/09	approach to instability: the Landau model		4
	11.1		A simple experimental model of a mechanical instability		2
		11.1.1	a shiple experimental model of a filedialical histability		

				Contents	xiii
		11.1.2	Flow around a cylinder in the neighborhood of the vortex-generation threshold		420
		11.1.3			420
	11.2		eigh-Bénard instability		423
	11.2	11.2.1	Convective thermal transport equations		423
		11.2.2	Stability of a layer of fluid in the presence of a vertical gradient of temperature		424
		11.2.3	Description of the Rayleigh–Bénard instability		425
		11.2.4	Mechanism for the Rayleigh-Bénard instability and corresponding orders of magnitude	ciann su the Excer	425
		11.2.5	Two-dimensional solution of the Rayleigh–Bénard problem		427
			The Landau model applied to Rayleigh-Bénard convection		432
		11.2.7	Evolution toward turbulence above the convection threshold		432
	11.3	Other clos	sed box instabilities		433
	11.0	11.3.1	Thermocapillary Bénard-Marangoni instability		433
		11.3.2	Taylor-Couette instability		437
		11.3.3	Other centrifugal instabilities		439
	11.4	Instabilitie	es in open flows		440
		11.4.1	Kelvin-Helmholtz instability		440
		11.4.2	Role of the shape of the velocity profile for open flows		445
		11.4.3	Sub-critical instabilities for Poiseuille and Couette flows		446
2	Turbu	lence			448
	12.1	A long his			448
	12.1		amental equations		449
	12.2	12.2.1	Statistical description of turbulent flows		449
			Derivatives of average values		450
			Governing equations of turbulent flows		451
		12.2.4	Energy balance in a turbulent flow		453
			Transport of the vorticity in a turbulent flow		455
	12.3		expressions for the Reynolds tensor and applications to free flows		457
			Closure of the Reynolds equation		457
		12.3.2	Eddy viscosity		458
		12.3.3	Mixing length		458
		12.3.4	Other practical approaches to turbulence		459
	12.4	Free turbu	alent flows: jets and wakes		460
		12.4.1	Basic properties of two-dimensional and turbulent jets and wakes		460
		12.4.2	Self-similar velocity fields in two-dimensional jets and wakes		463
		12.4.3	Three-dimensional axially symmetric turbulent jets and wakes		465
	12.5	Flows nea	r a solid wall		466
		12.5.1	Qualitative properties of turbulent flows in the presence of a wall		466
		12.5.2	Stationary turbulent flows parallel to a plane wall		466
		12.5.3	Turbulent flow between two parallel plates		469
		12.5.4	Pressure losses and coefficient of friction for flows between parallel planes and in tubes		473
		12.5.5	Turbulent boundary layers		475
		12.5.6	Separation of turbulent boundary layers		477
	12.6	Homogen	eous turbulence – Kolmogorov's theory		479
		12.6.1	Energy cascade in a homogeneous turbulent flow		479
		12.6.2			482
		12.6.3	Experimental verification of Kolmogorov's theory		485

X1V	Contents			10
		pects of turbulence		48
	12.7.1			48
	12.7.2	Coherent turbulent structures		48
	12.7.3	Dynamics of vortices in two-dimensional turbulence		48
	Exercises			48
Solu	tions to the Exerc	cises		49
Bibli	ography			50
Inde				50

12.2.2 Derivedyes of systemic values