Contents

Abstraction helps us see patterns.

Prologue

The status of mathematics Traditional mathematics: subjects Traditional mathematics: methods The content in this book Audience

26

28

29

31

Relationships

PAR	T ONE BUILDING UP TO CATEGORIES	
	Example: metric spaces salqmaxa oldawarb llams	
Cate	gories: the idea	
1.1	Abstraction and analogies	
1.2	Connections and unification	
1.3	Context	
1.4	Relationships	
1.5	Sameness	
1.6	Characterizing things by the role they play	
1.7	Zooming in and out	
1.8	Framework and techniques	
Abstraction		
2.1	What is math?	
2.2	The twin disciplines of logic and abstraction	
2.3	Forgetting details	

- 2.5 Forgetting details
- 2.4 Pros and cons
- 2.5 Making analogies into actual things
- 2.6 Different abstractions of the same thing
- 2.7 Abstraction journey through levels of math

3	Patt	erns	3
	3.1	Mathematics as pattern spotting	3
	3.2	Patterns as analogies	3
	3.3	Patterns as signs of structure	3
	3.4	Abstract structure as a type of pattern	4
	3.5	Abstraction helps us see patterns	4
4	Con	text	4
	4.1	Distance	4
	4.2	Worlds of numbers	4
	4.3	The zero world	5
5	Rela	tionships	5
	5.1	Family relationships	5
	5.2	Symmetry	5
	5.3	Arithmetic	5
	5.4	Modular arithmetic	5
	5.5	Quadrilaterals	5
	5.6	Lattices of factors	6
5	Forn	nalism	6
	6.1	Types of tourism	6
	6.2	Why we express things formally	6
	6.3	Example: metric spaces	7
	6.4	Basic logic	7
	6.5	Example: modular arithmetic	7
	6.6	Example: lattices of factors	8
7	Equi	ivalence relations	8
	7.1	Exploring equality	8
	7.2	The idea of abstract relations	8
11	7.3	Reflexivity	8
24	7.4	Symmetry	8
	7.5	Transitivity	8
	7.6	Equivalence relations	9

- 7.7 Examples from math
- 7.8 Interesting failures
- 8 Categories: the definition
 - 8.1 Data: objects and relationships
 - 8.2 Structure: things we can do with the data
 - 8.3 Properties: stipulations on the structure
 - 8.4 The formal definition

2.2

Forgetting details

Pros and cons

8.5	Size issues		
8.6	The geometry of associativity		
8.7	Drawing helpful diagrams		
8.8	The point of composition		
0.0	Some kay not phients induced		
18.17		nes to salisterio dost	
INTE	RLUDE A TOUR OF MA		
	Further topics		
Exam	ples we've already seen, secre		
9.1	Symmetry	The asymmetry of fi	
9.2	Equivalence relations	Injective and surject	
9.3	Factors		
9.4	Number systems		
	Churchly phishouts smilling10mc	Keianonsinp with is	
Orde	red sets		0.01
10.1	Totally ordered sets		
10.2	Partially ordered sets		
C II			
	mathematical structures		
	Small drawable examples	Formal definitions of	
11.2	Monoids	Uniquenegoragono	
11.3	Groups	Terminal objects	
11.4	Points and paths		
Sata a	ad functions		
(Caller	nd functions	Context	
12.1	Functions	Further topics	
12.2	Structure: identities and comp	osition	
12.3	Properties: unit and associative	ity laws	
12.4	The category of sets and funct	ions congetes lau C	17.2

Large worlds of mathematical structures 13 146 13.1 Monoids 17.5 An alternative definition of calcaonics 146 13.2 Groups 150 Products and convolutes 13.3 Posets 152 18.1 The idea behind categorical products 13.4 Topological spaces 156 13.5 Categories 158 Matrices 13.6 160

Isom	orphisms	
14.1	Sameness	
14.2	Invertibility	
14.3	Isomorphism in a category	
14.4	Treating isomorphic objects as the same	
14.5	Isomorphisms of sets	
14.6	Isomorphisms of large structures	
14.7	Further topics on isomorphisms	
Moni	ics and epics	
15.1	The asymmetry of functions	
15.2	Injective and surjective functions	
15.3	Monics: categorical injectivity	
15.4	Epics: categorical surjectivity	
15.5	Relationship with isomorphisms	1
15.6	Monoids	
15.7	Further topics	
Univ	ersal properties	
16.1	Role vs character	
16.2	Extremities	
16.3	Formal definition	1.11
16.4	Uniqueness	
16.5	Terminal objects	
16.6	Ways to fail	
16.7	Examples	
16.8	Context	
16.9	Further topics	
Duali	Structure: identifies and composition white the	
17.1	Turning arrows around	

Monic and epic 17.3 Terminal and initial 17.4 Monoids 17.5 An alternative definition of categories Groups **Products and coproducts** The idea behind categorical products 18.1 Topological spansert Formal definition 18.2 Categories ownaites Products as terminal objects 18.3 Products in Set 18.4

18

K.E.I

13.3

13.5

13.6

	18.5	Uniqueness of products in Set	247
	18.6	I Toudets marce posees	251
	18.7	The category of posets	253
	18.8	Monoids and groups	258
	18.9	Some key morphisms induced by products	261
	18.10	Dually: coproducts	261
	18.11	Coproducts in Set	263
	18.12	Decategorification: relationship with arithmetic	264
	18.13	Coproducts in other categories	266
	18.14	Further topics	268
9	Pullba	acks and pushouts	270
	19.1	Pullbacks	270
	19.2	Pullbacks in Set	273
	19.3	Pullbacks as terminal objects somewhere	275
	19.4	Example: Definition of category using pullbacks	276
	19.5	Dually: pushouts	278
	19.6	Pushouts in Set	279
	19.7	Pushouts in topology	286
	19.8	Further topics	288
0	Funct	ors	290
	20.1	Making up the definition	290
	20.2	Functors between small examples	293
	20.3	Functors from small drawable categories	294
	20.4	Free and forgetful functors	298
	20.5	Preserving and reflecting structure	302
	20.6	Further topics	306
1	Categ	ories of categories	309
	21.1	The category Cat	309
	21.2	Terminal and initial categories	313
	21.3	Products and coproducts of categories	314
	21.4	Isomorphisms of categories	317
	21.5	Full and faithful functors	322

22 Natural transformations

- 22.1 Definition by abstract feeling
- 22.2 Aside on homotopies
- 22.3 Shape
- 22.4 Functor categories
- 22.5 Diagrams and cones over diagrams
- 22.6 Natural isomorphisms

	22.7	Equivalence of categories		338
				343
	22.8	Examples of equivalences of large categories		4.40.41
		Horizontal composition		344
		Interchange		346
		Totality		350
23	Yoned			351
	23.1	The joy of Yoneda		351
	23.2	Revisiting sameness		352
	23.3	Representable functors		354
	23.4	The Yoneda embedding		357
	23.5	The Yoneda Lemma		365
	23.6	Further topics		367
24	Highe	er dimensions		368
	-	Why higher dimensions?		368
		Defining 2-categories directly		370
	24.3	Revisiting homsets		371
279	24.4	From underlying graphs to underlying 2-graphs		374
		Monoidal categories		378
	24.6			380
	24.7	Coherence		383
	24.8	Degeneracy		385
	24.9	n and infinity		388
	24.10	The moral of the story		395
		Present to research threadens and the transmit to me sent		
	Epilo	gue: Thinking categorically		396
	Motiv			397
209	The p	The process of doing category theory		398
	and the second	ractice of category theory		399
	Dunit	Terminal and mitial concertes		
Appe	ndix A	Background on alphabets		403
in years				1750R
Appe	ndix B	Background on basic logic		404

405

407

410

416

418

420

2251

22.3

Diagrams and conces est

Appendix CBackground on set theoryAppendix DBackground on topological spaces

Glossary Further reading Acknowledgements Index