Preface

Acknowledgments List of Notation

Part I Overview and Background Topics

XXIV

XXV1

2

3

7

10

11

11

12

13

15

15

- 1 Introduction
 - 1.1 Quantum Theory and the Origins of Electronic Structure
 - 1.2 Why Is the Independent-Electron Picture So Successful?
 - 1.3 Emergence of Quantitative Calculations
 - 1.4 The Greatest Challenge: Electron Interaction and Correlation
 - 1.5 Density Functional Theory
 - 1.6 Electronic Structure Is Now an Essential Part of Research
 - 1.7 Materials by Design
 - 1.8 Topology of Electronic Structure
- 2 Overview
 - 2.1 Electronic Structure and the Properties of Matter

2.2	Electronic Ground State: Bonding and Characteristic Structures	17
2.3	Volume or Pressure As the Most Fundamental Variable	19
2.4	How Good Is DFT for Calculation of Structures?	21
2.5	Phase Transitions under Pressure	23
2.6	Structure Prediction: Nitrogen Solids and Hydrogen Sulfide	
	Superconductors at High Pressure	26
2.7	Magnetism and Electron–Electron Interactions	31
2.8	Elasticity: Stress-Strain Relations	33
2.9	Phonons and Displacive Phase Transitions	35
2.10	Thermal Properties: Solids, Liquids, and Phase Diagrams	38
2.11	Surfaces and Interfaces	44
2.12	Low-Dimensional Materials and van der Waals Heterostructures	47
2.13	Nanomaterials: Between Molecules and Condensed Matter	48
2.14	Electronic Excitations: Bands and Bandgaps	50

.

	2.15	Electronic Excitations and Optical Spectra	54
	2.16	Topological Insulators	57
	2.17	The Continuing Challenge: Electron Correlation	57
3	Theor	etical Background	60
	3.1	Basic Equations for Interacting Electrons and Nuclei	60
	3.2	Coulomb Interaction in Condensed Matter	64
	3.3	Force and Stress Theorems	65
	3.4	Generalized Force Theorem and Coupling Constant Integration	67
	3.5	Statistical Mechanics and the Density Matrix	68
	3.6	Independent-Electron Approximations	69
	3.7	Exchange and Correlation	74
		Exercises	78
4	Period	lic Solids and Electron Bands	81
	4.1	Structures of Crystals: Lattice + Basis	81
	4.2	Reciprocal Lattice and Brillouin Zone	90
	4.3	Excitations and the Bloch Theorem	94
	4.4	Time-Reversal and Inversion Symmetries	98
	4.5	Point Symmetries	100
	4.6	Integration over the Brillouin Zone and Special Points	101
	4.7	Density of States	105
		Exercises	106
5	Unifo	rm Electron Gas and sp-Bonded Metals	109
	5.1	The Electron Gas	109
	5.2	Noninteracting and Hartree–Fock Approximations	111
	5.3	Correlation Hole and Energy	117
	5.4	Binding in sp-Bonded Metals	121
	5.5	Excitations and the Lindhard Dielectric Function	122
		Exercises	126
		How Good is DFT for Calculation of Structures?	
		Part II Density Functional Theory	
6	Densi	ty Functional Theory: Foundations	129
	6.1	Overview	129
	6.2	Thomas–Fermi–Dirac Approximation	130
	6.3	The Hohenberg-Kohn Theorems	131
	6.4	Constrained Search Formulation of DFT	135
	6.5	Extensions of Hohenberg-Kohn Theorems	137
	6.6	Intricacies of Exact Density Functional Theory	139
	6.7	Difficulties in Proceeding from the Density	141
		Exercises	143

viii

7	The K	John-Sham Auxiliary System	145
	7.1	Replacing One Problem with Another	145
	7.2	The Kohn–Sham Variational Equations	148
	7.3	Solution of the Self-Consistent Coupled Kohn–Sham Equations	150
	7.4	Achieving Self-Consistency	157
	7.5	Force and Stress	160
	7.6	Interpretation of the Exchange–Correlation Potential Vxc	161
	7.7	Meaning of the Eigenvalues	162
	7.8	Intricacies of Exact Kohn-Sham Theory	163
	7.9	Time-Dependent Density Functional Theory	166
	7.10	Other Generalizations of the Kohn-Sham Approach	167
		Exercises	168
8	Funct	ionals for Exchange and Correlation I	171
	8.1	Overview	171
	8.2	$E_{\rm xc}$ and the Exchange–Correlation Hole	172
	8.3	Local (Spin) Density Approximation (LSDA)	174
	8.4	How Can the Local Approximation Possibly Work As Well As It Does?	175
	8.5	Generalized-Gradient Approximations (GGAs)	179
	8.6	LDA and GGA Expressions for the Potential $V_{xc}^{\sigma}(\mathbf{r})$	183
	8.7	Average and Weighted Density Formulations: ADA and WDA	185
	8.8	Functionals Fitted to Databases	185
	13.3	Exercises	186
9	Funct	ionals for Exchange and Correlation II	188
	9.1	Beyond the Local Density and Generalized Gradient Approximations	188
	9.2	Generalized Kohn-Sham and Bandgaps	189
	9.3	Hybrid Functionals and Range Separation	191
	9.4	Functionals of the Kinetic Energy Density: Meta-GGAs	195
	9.5	Optimized Effective Potential	197
	9.6	Localized-Orbital Approaches: SIC and DFT+U	199
	9.7	Functionals Derived from Response Functions	203
	9.8	Nonlocal Functionals for van der Waals Dispersion Interactions	205
	9.9	Modified Becke–Johnson Functional for Vxc	209
	9.10	Comparison of Functionals	209
		Exercises	213
		Part III Important Preliminaries on Atoms	
10	Floot	ronic Structure of Atoms	215
IC	10.1	One Electron Radial Schrödinger Equation	215
	10.1	Independent Derticle Equational Scherical Detenticle	215
	10.2	Spin Orbit Interaction	217
	10.3	Open Shell Atemat Menerhanical Detentials	219
	10.4	Open-Shell Atoms: Nonspherical Potentials	219

	10.5	Example of Atomic States: Transition Elements	221
	10.6	Delta-SCF: Electron Addition, Removal, and Interaction Energies	224
	10.7	Atomic Sphere Approximation in Solids	225
		Exercises	228
11	Pseudo	opotentials	230
031	11.1	Scattering Amplitudes and Pseudopotentials	230
	11.2	Orthogonalized Plane Wayes (OPWs) and Pseudopotentials	233
	11.3	Model Ion Potentials	237
	11.4	Norm-Conserving Pseudopotentials (NCPPs)	238
	11.5	Generation of <i>l</i> -Dependent Norm-Conserving Pseudopotentials	241
	11.6	Unscreening and Core Corrections	245
	11.7	Transferability and Hardness	246
	11.8	Separable Pseudopotential Operators and Projectors	247
	11.9	Extended Norm Conservation: Beyond the Linear Regime	248
	11.10	Optimized Norm-Conserving Potentials	249
	11.11	Ultrasoft Pseudopotentials	250
	11.12	Projector Augmented Waves (PAWs): Keeping the Full Wavefunction	252
	11.13	Additional Topics	255
		Exercises	256
		Part IV Determination of Electronic Structure: The Basic Methods	
Ov	verview	of Chapters 12–18	259
12	Plane	Waves and Grids: Basics	262
	12.1	The Independent-Particle Schrödinger Equation in a Plane Wave Basis	262
	12.2	Bloch Theorem and Electron Bands	264
	12.3	Nearly-Free-Electron Approximation	265
	12.4	Form Factors and Structure Factors	267
	12.5	Approximate Atomic-Like Potentials	269
	12.6	Empirical Pseudopotential Method (EPM)	270
	12.7	Calculation of Electron Density: Introduction of Grids	272
	12.8	Real-Space Methods I: Finite Difference and Discontinuous	
		Galerikin Methods	274
	12.9	Real-Space Methods II: Multiresolution Methods	277
		Exercises	280
13	Plane	Waves and Real-Space Methods: Full Calculations	283
	13.1	Ab initio Pseudopotential Method	284
	13.2	Approach to Self-Consistency and Dielectric Screening	286
	13.3	Projector Augmented Waves (PAWs)	287
	13.4	Hybrid Functionals and Hartree-Fock in Plane Wave Methods	288
	13.5	Supercells: Surfaces, Interfaces, Molecular Dynamics	289
	13.6	Clusters and Molecules	292

X

....

	13.7	Applications of Plane Wave and Grid Methods		292
		Exercises		293
14	Locali	zed Orbitals: Tight-Binding		295
	14.1	Localized Atom-Centered Orbitals		296
	14.2	Matrix Elements with Atomic-Like Orbitals		297
	14.3	Spin-Orbit Interaction		301
	14.4	Slater-Koster Two-Center Approximation		302
	14.5	Tight-Binding Bands: Example of a Single s Band		303
	14.6	Two-Band Models		305
	14.7	Graphene		306
	14.8	Nanotubes		308
	14.9	Square Lattice and CuO ₂ Planes		310
	14.10	Semiconductors and Transition Metals		311
	14.11	Total Energy, Force, and Stress in Tight-Binding		312
	14.12	Transferability: Nonorthogonality and Environment Dependence		315
		Exercises		317
15	Locali	zed Orbitals: Full Calculations		320
15	15.1	Solution of Kohn–Sham Equations in Localized Bases		320
	15.2	Analytic Basis Functions: Gaussians		322
	15.3	Gaussian Methods: Ground-State and Excitation Energies		324
	15.4	Numerical Orbitals		324
	15.5	Localized Orbitals: Total Energy, Force, and Stress		327
	15.6	Applications of Numerical Local Orbitals		329
	15.7	Green's Function and Recursion Methods		329
	15.8	Mixed Basis		330
		Exercises		331
16	A	antad Eunstiana, ADW VVD MTO		222
10	Augin 16.1	Augmented Dlene Weyee (ADWe) and "Muffin Tine"		222
	16.2	Solving ADW Equations: Examples		227
	16.2	The KKD or Multiple Scattering Theory (MST) Method		337
	16.5	Allows and the Coherent Potential Approximation (CPA)		342
	16.5	Muffin Tin Orbitale (MTOc)		350
	16.6	Canonical Rande		352
	16.7	Localized "Tight-Binding" MTO and KKR Formulations		358
	16.8	Total Energy Force and Pressure in Augmented Methods	5.00	360
	10.0	Exercises		362
				502
17	Augm	ented Functions: Linear Methods		365
	17.1	Linearization of Equations and Linear Methods		365
	17.2	Energy Derivative of the Wavefunction: ψ and ψ		366
	17.3	General Form of Linearized Equations		368
	17.4	Linearized Augmented Plane Waves (LAPWs)		370

xi

	17.5	Applications of the LAPW Method		372
	17.6	Linear Muffin-Tin Orbital (LMTO) Method		375
	17.7	Tight-Binding Formulation		379
	17.8	Applications of the LMTO Method		379
	17.9	Beyond Linear Methods: NMTO		381
	17.10	Full Potential in Augmented Methods		383
		Exercises		385
18	Locali	ty and Linear-Scaling $O(N)$ Methods		386
10	18.1	What Is the Problem?		386
	18.2	Locality in Many-Body Quantum Systems		388
	18.3	Building the Hamiltonian		390
	18.4	Solution of Equations: Nonvariational Methods		391
	18.5	Variational Density Matrix Methods		400
	18.6	Variational (Generalized) Wannier Function Methods		402
	18.7	Linear-Scaling Self-Consistent Density Functional Calculations		405
	18.8	Factorized Density Matrix for Large Basis Sets		406
	18.9	Combining the Methods		407
		Exercises		408
		Part V From Electronic Structure to Properties of Matter		
19	Quant	um Molecular Dynamics (QMD)		411
	19.1	Molecular Dynamics (MD): Forces from the Electrons		411
	19.2	Born-Oppenheimer Molecular Dynamics		413
	19.3	Car-Parrinello Unified Algorithm for Electrons and Ions		414
	19.4	Expressions for Plane Waves	15.8	418
	19.5	Non-self-consistent QMD Methods		419
	19.6	Examples of Simulations	Anema	419
		Exercises		424
20	Respo	nse Functions: Phonons and Magnons		427
20	20.1	Lattice Dynamics from Electronic Structure Theory	16.3	427
	20.2	The Direct Approach: "Frozen Phonons" Magnons		430
	20.3	Phonons and Density Response Functions		433
	20.4	Green's Function Formulation		435
	20.5	Variational Expressions		436
	20.6	Periodic Perturbations and Phonon Dispersion Curves		438
	20.7	Dielectric Response Functions. Effective Charges		439
	20.8	Electron–Phonon Interactions and Superconductivity		441
	20.9	Magnons and Spin Response Functions		442
		Exercises		444
000	-			
21	Excita	tion Spectra and Optical Properties		446
	21.1	Overview		446
	21.2	Time-Dependent Density Functional Theory (TDDFT)		447

xiii

	21.3	Dielectric Response for Noninteracting Particles	448
	21.4	Time-Dependent DFT and Linear Response	450
12.	21.5	Time-Dependent Density-Functional Perturbation Theory	451
	21.6	Explicit Real-Time Calculations	452
	21.7	Optical Properties of Molecules and Clusters	454
	21.8	Optical Properties of Crystals	459
	21.9	Beyond the Adiabatic Approximation	463
		Exercises	464
22	Surfac	es, Interfaces, and Lower-Dimensional Systems	465
	22.1	Overview	465
	22.2	Potential at a Surface or Interface	466
	22.3	Surface States: Tamm and Shockley	467
	22.4	Shockley States on Metals: Gold (111) Surface	470
	22.5	Surface States on Semiconductors	471
	22.6	Interfaces: Semiconductors	472
	22.7	Interfaces: Oxides	474
	22.8	Layer Materials	477
	22.9	One-Dimensional Systems	478
		Exercises	479
23	Wanni	er Functions	481
	23.1	Definition and Properties	481
	23.2	Maximally Projected Wannier Functions	485
	23.3	Maximally Localized Wannier Functions	487
	23.4	Nonorthogonal Localized Functions	491
	23.5	Wannier Functions for Entangled Bands	492
	23.6	Hybrid Wannier Functions	494
	23.7	Applications	495
		Exercises	496
24	Dolori	ration I agalization and Darmy Dhagas	100
24	24 1	Overview	499
	24.1	Delarization: The Fundamental Difficulty	501
	24.2	Geometric Berry Dhose Theory of Delerization	505
	24.5	Delation to Contors of Wannier Eurotions	509
	24.4	Calculation of Polarization in Crystals	500
	24.5	Localization: A Digorous Measure	510
	24.0	The Thouless Quantized Particle Pump	510
	24.7	Polarization Lattice	512
	24.0	Evercises	514
		LACICISCS	514

Part VI Electronic Structure and Topology

05	m 1			517
25	Topolo	bgy of the Electronic Structure of a Crystal: Introduction		517
	25.1	Introduction		517
	25.2	Topology of What?		519
	25.3	Bulk-Boundary Correspondence		520
	25.4	Berry Phase and Topology for Bloch States in the Brillouin Zone		521
	25.5	Berry Flux and Chern Numbers: Winding of the Berry Phase		524
	25.6	Time-Reversal Symmetry and Topology of the Electronic System		526
	25.7	Surface States and the Relation to the Quantum Hall Effect	21112	527
	25.8	Wannier Functions and Topology	~	528
	25.9	Topological Quantum Chemistry	1.22	529
	25.10	Majorana Modes		529
		Exercises		530
26	Two-B	and Models: Berry Phase, Winding, and Topology		531
	26.1	General Formulation for Two Bands		531
	26.2	Two-Band Models in One-Space Dimension		533
	26.3	Shockley Transition in the Bulk Band Structure and Surface States		535
	26.4	Winding of the Hamiltonian in One Dimension: Berry Phase		
		and the Shockley Transition		537
	26.5	Winding of the Berry Phase in Two Dimensions: Chern Numbers		
	20.0	and Topological Transitions		539
	26.6	The Thouless Quantized Particle Pump		541
	26.7	Graphene Nanoribhons and the Two-Site Model		543
	20.1	Exercises		545
		LACICISCS		515
27	Topolo	ogical Insulators I: Two Dimensions		547
	27.1	Two Dimensions: sp^2 Models		548
	27.2	Chern Insulator and Anomalous Quantum Hall Effect		550
	27.3	Spin-Orbit Interaction and the Diagonal Approximation		552
	27.4	Topological Insulators and the Z ₂ Topological Invariant		554
	27.5	Example of a Topological Insulator on a Square Lattice		557
	27.6	From Chains to Planes: Example of a Topological Transition		560
	27.7	Hg/CdTe Quantum Well Structures		561
	27.8	Graphene and the Two-Site Model		563
	27.9	Honeycomb Lattice Model with Large Spin-Orbit Interaction		567
		Exercises		567
28	Topole	orical Insulators II. Three Dimensions		569
207	28.1	Weak and Strong Topological Insulators in Three Dimensions		005
	20.1	Four Topological Invariants		569
	28.2	Tight-Binding Example in 3D		572
	28.3	Normal and Topological Insulators in Three Dimensions:		512
	20.5	ShaSea and BiaSea		573
		502505 and D12505		515

28.4	Weyl and Dirac Semimetals	575
28.5	Fermi Arcs	578
	Exercises	580
	Part VII Appendices	
Annendix	A Functional Equations	581
A.1	Basic Definitions and Variational Equations	581
A.2	Functionals in Density Functional Theory Including Gradients	582
	Exercises	583
100		504
Appendix D 1	B LSDA and GGA Functionals	584
B.I	Local Spin Density Approximation (LSDA)	584
B.2	Generalized-Gradient Approximation (GGAs)	505
B.3	GGAS: Explicit PBE Form	282
Appendix	C Adiabatic Approximation	587
C.1	General Formulation	587
C.2	Electron-Phonon Interactions	589
	Exercises	589
Appendix	D Perturbation Theory, Response Functions, and Green's Functions	590
D.1	Perturbation Theory	590
D.2	Static Response Functions	591
D.3	Response Functions in Self-Consistent Field Theories	592
D.4	Dynamic Response and Kramers–Kronig Relations	593
D.5	Green's Functions	596
D.6	The " $2n + 1$ Theorem"	597
	Exercises	599
A I'		(00
Appendix	E Dielectric Functions and Optical Properties	600
E.1	Electromagnetic waves in Matter	600
E.2	The f Sum Dule	602
E.3 E 4	Scolar Longitudinal Dialastria Eurotiana	602
E.4	Tonson Transverse Dialectric Functions	604
E.J E.G	Lettice Contributions to Dielectric Response	605
L.0	Exercises	606
	L'ACICISCS	000
Appendix	F Coulomb Interactions in Extended Systems	607
F.1	Basic Issues	607
F.2	Point Charges in a Background: Ewald Sums	609
F.3	Smeared Nuclei or Ions	613
F.4	Energy Relative to Neutral Atoms	614
F.5	Surface and Interface Dipoles	615

F.6	Reducing Effects of Artificial Image Charges		616
	Exercises		619
Appendix	G Stress from Electronic Structure		620
G.1	Macroscopic Stress and Strain		620
G.2	Stress from Two-Body Pair-Wise Forces		623
G.3	Expressions in Fourier Components		623
G.4	Internal Strain		625
0.65 582	Exercises		626
ER2 25.7			(07
Appendix	H Energy and Stress Densities		620
H.I	Energy Density		620
H.2	Stress Density		622
H.3	Electron L collingtion Equation (ELE)		624
H.4	Electron Localization Function (ELF)		626
	Exercises	xilinity	030
Appendix	I Alternative Force Expressions		637
082 I.1	Variational Freedom and Forces		638
I.2	Energy Differences		640
I.3	Pressure		640
I.4	Force and Stress		641
I.5	Force in APW-Type Methods		642
	Exercises		643
Appendix	J Scattering and Phase Shifts		644
J.1	Scattering and Phase Shifts for Spherical Potentials		644
Annondin	V Hasful Deletions and Fermulas		617
Appendix V 1	R Userul Relations and Formulas		647
K.I K.2	Spharical Harmonics and Lagondra Dolynomials		648
K.2 K 2	Dool Spherical Harmonics		640
K.J KA	Clabsob Gordon and Gount Coofficients		649
K.4	Chebyshey Polynomials	2.3	650
R.J	Chebyshev roryhonnais		050
Appendix	L Numerical Methods		651
L.1	Numerical Integration and the Numerov Method		651
L.2	Steepest Descent		652
L.3	Conjugate Gradient		653
L.4	Quasi-Newton-Raphson Methods		655
L.5	Pulay DIIS Full-Subspace Method		655
L.6	Broyden Jacobian Update Methods		656
L.7	Moments, Maximum Entropy, Kernel Polynomial Method,		
	and Random Vectors		657
	Exercises		659

	Contents	xvii
Annendix	M Iterative Methods in Electronic Structure	661
M.1	Why Use Iterative Methods?	661
M.2	Simple Relaxation Algorithms	662
M.3	Preconditioning	663
M.4	Iterative (Krylov) Subspaces	664
M.5	The Lanczos Algorithm and Recursion	665
M.6	Davidson Algorithms	667
M.7	Residual Minimization in the Subspace - RMM-DIIS	667
M.8	Solution by Minimization of the Energy Functional	668
M.9	Comparison/Combination of Methods: Minimization of	
	Residual or Energy	672
M.10	Exponential Projection in Imaginary Time	672
M.11	Algorithmic Complexity: Transforms and Sparse Hamiltonians	672
	Exercises	676
Appendix	N Two-Center Matrix Elements: Expressions for Arbitrary	
Angu	lar Momentum <i>l</i>	677
Annendix	O Dirac Equation and Spin_Orbit Interaction	679
O 1	The Dirac Equation	680
0.1	The Spin-Orbit Interaction in the Schrödinger Equation	681
0.2	Relativistic Equations and Calculation of the Spin–Orbit Interaction	001
0.0	in an Atom	683
Appendix	P Berry Phase, Curvature, and Chern Numbers	686
P.1	Overview	686
P.2	Berry Phase and Berry Connection	687
P.3	Berry Flux and Curvature	689
P.4	Chern Number and Topology	691
P.5	Adiabatic Evolution	692
P.6	Aharonov–Bohm Effect	692
P.7	Dirac Magnetic Monopoles and Chern Number	694
	Exercises	696
Appendix	Q Quantum Hall Effect and Edge Conductivity	697
Q.1	Quantum Hall Effect and Topology	697
Q.2	Nature of the Surface States in the QHE	698
Appendix	R Codes for Electronic Structure Calculations for Solids	701
Reference	S	704
Index		756
	to demonstrate that different methods give the same result. It is me to understand what can be calculated accurately using different function on everbod is used. There are quaning efforts to create databases and us	