

3-3. Magadi and an ask how the statistic manner while a not set in an in the set. 35

3. Schlagmennen stoletig 101 last in Octabulitat Stricopatings 38

A WHAT I STORE STORE A 20 STORE STORE STORE STORE STORE STORE

abrason (Johnseines

Foreword xi **Introduction to the Dover Edition** xiii Bibliography xxii STORY LOSS STHEREIT DECK Preface xxxi **List of the Main Symbols** XXXV

- 1. Magnetization and Magnetic Susceptibility
 - 1.1 Definitions and Units
 - 1.2 Diamagnetic and Paramagnetic Susceptibilities 2
 - 1.3 Fundamental Equations in Molecular Magnetism 4
 - 1.4 Van Vleck Formula 5

1.5 Temperature-Independent Paramagnetism 7 References 8

2. Molecules Containing a Unique Magnetic Center without First-Order Orbital Momentum 9

2.1 The Curie Law 2.2 Magnetization 10 2.3 Anisotropy of the g-Factor 12 2.4 Zero-Field Splitting: Qualitative Approach 14 2.5 Zero-Field Splitting: Quantitative Approach 17 2.6 Intermolecular Interactions 26 29 References

and the service of the

CLEAR STREET CONTRACTOR

Motecnies Containtyn

R. DESPRIORAN C.S.

NAME OF BROATERS

3. Molecules Containing a Unique Magnetic Center with a First-Order Orbital Momentum 31

3.1 First-Order Orbital Momentum and Spin-Orbit Coupling 31 3.2 Magnetism of a d^1 Ion in an Octahedral Field 32 3.3 Magnetism of a d^1 Ion in an Axially Distorted Octahedral Field 35 3.4 Magnetism of a Cobalt(II) Ion in Octahedral Surroundings 38 3.5 Magnetism of the Rare Earth-Containing Compounds: The Free-Ion Approximation 43

3.6 Magnetism of the Rare Earth-Containing Compounds: Some Examples 47

References 51

4. Low-Spin-High-Spin Transition

- 4.1 High-Spin Molar Fraction versus Temperature Curves for Spin Transition Compounds 54
- 4.2 Mechanism of the Spin Transition at the Molecular Scale 55
- 4.3 Spin Transition and Cooperativity 59
- 4.4 Regular Solution Model 60
- 4.5 Domain Model 67
- 4.6 Some Selected Examples 70

4.7 Spin Transition and Molecular Electronics 82 References 84 CONTRACT THE ARE STRATED TO AND A

5. Intermediate-Spin and Spin-Admixed States 87

- 5.1 Intermediate Spin: One-Electron Approach 87
- 5.2 Spin-Admixed Ground State 89
- 5.3 Examples of Intermediate-Spin and Spin-Admixed States in Iron(III) Compounds 93
- 5.4 Examples of Intermediate-Spin and Spin-Admixed States in Iron(II)

Compounds 1557 Ben detainte-Indenenat 96

5.5 Spin Transition and Spin Equilibrium Involving an Intermediate-Spin State 97 References 100

- **6.** Isotropic Interaction in Dinuclear Compounds 103
 - 6.1 Copper(II) Dinuclear Compounds 103
 - 6.2 Other Symmetrical Dinuclear Compounds 112
 - 6.3 Asymmetrical Dinuclear Compounds 120
 - 6.4 Influence of the Local Anisotropy 125
 - 6.5 Intermolecular Interactions between Dinuclear Units 131 References 132

CONTENTS

7. Dipolar, Anisotropic, and Antisymmetric **Interactions in Dinuclear Compounds** 135

7.1 Dipolar and Anisotropic Interactions in Copper(II) Dinuclear Compounds 135

vii

- 7.2 Antisymmetric Interaction in Copper(II) Dinuclear Compounds 138
- 7.3 Other Dinuclear Compounds 141 References 143 11.2 Chains of Equally Scaped Mainten
- 8. Orbital Models of the Isotropic Interaction: Case of Two Local Doublet States 145
 - 8.1 Some Preliminary Remarks 145
 - 8.2 Deficiency of the Molecular Orbital Approach at the Self-Consistent Field Level 146
 - 8.3 Concept of Magnetic Orbitals: Orthogonalized and Natural Magnetic Orbitals 148
 - 8.4 The Active-Electron Approximation 150
 - 8.5 Beyond the Active-Electron Approximation: Ab Initio Calculation of the Singlet-Triplet Energy Gap 155

INNU VORTEREDDER I IRTEME

Later and the state respectively and

SHOWNEDRE

229

- 8.6 Theoretical Interpretation of Some Experimental Results 159 References 182
- 9. Orbital Models for Magnetic Interaction: Other 185 Cases
 - 9.1 Some Additional Comments on the Concept of Magnetic Orbital 185
 - 9.2 The Active-Electron Approximation for Dinuclear Species with More Than Two Unpaired Electrons 186
- 9.3 Interaction between Pairs of Magnetic Orbitals 190
 - 9.4 Ferromagnetic Interaction through Crossed Interaction between Singly Occupied and Empty Orbitals 199
 - 9.5 Mechanism of Anisotropic and Antisymmetric Interactions 202
 - 9.6 Interaction Involving Ions with Unquenched

Orbital Momentum 204

208 References

10. Trinuclear Compounds and Compounds of Higher Nuclearity 211

10.1 Symmetrical ABA Compounds 211 10.2 Nonsymmetrical Trinuclear Compounds 226

10.3 Tetranuclear Species with a Central Magnetic Ion

241

10.4 Cubane-Like Tetranuclear Species 236 10.5 Competing Interactions and Spin Frustration 10.6 High-Spin Molecules 245 References 248

11. Magnetic Chain Compounds 251

11.1 Chains of Equally Spaced Copper(II) Ions 251 11.2 Chains of Equally Spaced Magnetic Centers with Local Spins Larger Than 1/2 257 11.3 Ising and XY Models 261 11.4 Alternating Chains and Spin-Peierls Transition 263 11.5 Regular Ferrimagnetic Chains: Theory 269 11.6 Regular Ferrimagnetic Chains: Some Examples 275

viii

11.7 Alternating Ferrimagnetic Chains 281 References 284

- 12. Magnetic Long-Range Ordering in Molecular **Compounds: Design of Molecular-Based Magnets** 287
 - Three-Dimensional Magnetic Ordering 287 12.1
 - Molecular-Based Magnets 12.2 288
 - **Orbital Degeneracy and Ferromagnetic Interaction** 12.3 290
 - Ferromagnetic Transitions in Decamethylferrocenium 12.4 Tetracyanoethenide and Other Decamethylmetallocenium **Charge-Transfer Salts** 294
 - Intermolecular Ferromagnetic Interactions and Ferromagnetic 12.5 **Transition in Organic Radicals** 300
 - Spin Polarization and Intermolecular Ferromagnetic 12.6 Interactions 303
 - 309

Topological Degeneracy and High-Spin Polycarbenes 12.7 Magnetic Ordering of Ferrimagnetic Chains 12.8 313 Spin Canting and Magnetic Ordering 321 12.9 12.10 Some Additional Results 325 Labor I de la store (martin de la start 328 References

- **13. Spin-Dependent Delocalization in Mixed-Valence** Compounds 333
 - 13.1 Mixed-Valence Dinuclear Compounds with a Unique Unpaired Electron 333
 - 13.2 Spin-Dependent Delocalization in Mixed-Valence Dinuclear **Compounds with Two Magnetic Sites** 337

CONTENTS

13.3 A Spin Hamiltonian Taking into Account the Spin-Dependent Delocalization 340
13.4 Role of the Nuclear Relaxation 343
13.5 Some Examples of Delocalized Mixed-Valence Pairs with Magnetic Cores 345
13.6 Mixed-Valence Compounds of Higher Nuclearity 350
References 352

Appendices 355

Appendix 1: Physical Constants and Units355Appendix 2: Action of L_x , L_y , and L_z on the d Orbitals357Appendix 3: Matrix Elements of L_x , L_y , and L_z Using the d Orbitals as a

Basis Set 359 Appendix 4: Action of the Spin Operators S_x , S_y , and S_z on the Spin Functions 361 Appendix 5: Escalator Operators S_+ and S_- , and L_+ and L_- 365 Appendix 6: Coupling of Two Spins S_A and S_B , and Clebsch–Gordon (or Wigner) Coefficients 367

Elevent levent carter in the second of expanding the weble that the list in the list of the list of the second

shows in a fightle is Chapter S the wheleks determine and the Addition Addition for the last

A set he stodes load thhose letely the knowl contribution out of he which to rest in the

Index 375

The charter element for took over brought opport by a pool of solid providing to show the took over brought opport by a pool intent. On the Kaan 250 of the content of the pool of the content o