5

6

6

7

9

10

Introduction

Fundamental Concepts and Equations 1

- Some mathematical concepts and notation 1.1
 - **Basic** notation 1.1.1
 - **Differential operators** 1.1.2
 - Transformations of Cartesian coordinates 1.1.3
 - Hölder-continuous and Lipschitz-continuous func-1.1.4 tions
 - 1.1.5 Symbols 'o' and 'O'

		1.1.5	Symbols ' o ' and ' O '		10
		1.1.6	Measure and integral		10
		1.1.7	Description of the boundary		10
		1.1.8	Measure on the boundary of a domain		11
		1.1.9	Green's theorem.		12
		1.1.10	Lebesgue spaces	 int	12
		1.1.11	One auxiliary result		14
	1.2	Gover	ning equations and relations of gas dynamics		14
		1.2.1	Description of the flow		15
		1.2.2	The transport theorem		17
		1.2.3	The continuity equation		20
		1.2.4	The equations of motion		21
		1.2.5	The equations of motion of general fluids		23
		1.2.6	The law of conservation of the moment of mo-		
			mentum; symmetry of the stress tensor		23
157		1.2.7	The Navier–Stokes equations		24
		1.2.8	Properties of the viscosity coefficients		25
14		1.2.9	The Reynolds number		25
		1.2.10	Various forms of the Navier–Stokes equations		26
		1.2.11	The energy equation		26
		1.2.12	Thermodynamical relations		28
		1.2.13	Entropy		29
		1.2.14	The second law of thermodynamics		30
		1.2.15	Dissipation form of the energy equation		30
		1.2.16	Entropy form of the energy equation		32
		1.2.17	Adiabatic flow		32
100		1.2.18	Barotropic flow		33
		1.2.19	Complete system describing the flow of a heat-		
		101.41.5 L	conductive gas		34
		1.2.20	Speed of sound; Mach number		35
		1.2.21	Simplified models		35

vii

		1.2.22	2 Initial and boundary conditions	36
		1.2.23	B Dimensionless form of gas dynamics equations	38
	1.3	Some	advanced mathematical concepts and results	40
		1.3.1	Spaces of continuous, Hölder-continuous and con-	
			tinuously differentiable functions	40
		1.3.2	Distributions	41
		1.3.3	Sobolev spaces	43
		1.3.4	Functions with values in Banach spaces	46
	1.4	Surve	ey of concepts and results from functional analysis	48
		1.4.1	Linear vector spaces	48
		1.4.2	Normed linear space	49
		1.4.3	Duals to Banach spaces, weak and weak-* topolo-	
			gies	51
		1.4.4	Riesz representation theorem	53
		1.4.5	Operators	53
		1.4.6	Lax–Milgram lemma	55
		1.4.7	Imbeddings	55
		1.4.8	Solution of nonlinear operator equations	56
2	Bas	ic fact	s from the theory of the Euler and Navier–	
St	okes	equati	ions	57
	2.1	Hype	rbolic systems and the Euler equations	57
	2.2	Exist	ence of smooth solutions	58
		2.2.1	Hyperbolic systems and characteristics	58
		2.2.2	Formulation of the hyperbolic problem	60
		2.2.3	Linear scalar equation	61
		2.2.4	Solution of a linear system	62
		2.2.5	Nonlinear scalar equation	63
		2.2.6	Symmetric hyperbolic systems	65
		2.2.7	Quasilinear system	66
		2.2.8	Local existence for a quasilinear system	67
		2.2.9	Local existence for equations of inviscid barotropic	

68

69

70

73

76

79

80

81

81

· 1.2.21 Simplified models

- flow Weak solutions 2.3 Blow up of classical solutions 2.3.1 2.3.2 Generalized formulation for systems of conservation laws Examples of piecewise smooth weak solutions 2.3.3 Entropy condition 2.3.4 Entropy in fluid mechanics 2.3.5 Method of artificial viscosity 2.3.6 Existence and uniqueness of weak entropy solu-2.3.7
 - tions for scalar conservation laws
 - Riemann problem 2.3.8

	Li Li				
	2.3.9 Linear Riemann problem	82			
	2.3.10 Nonlinear Riemann problem	83			
	2.3.11 Existence result for the 2×2 Euler system of				
	barotropic flow	88			
	2.3.12 Global existence results for general 1D systems	91			
2.4	Nonstationary Navier-Stokes equations of compress-				
	ible flow	92			
	2.4.1 Results for the full system of compressible Navier-				
	Stokes equations	92			
	2.4.2 Results for equations of barotropic flow	94			
2.5	Existence results for stationary compressible Navier-				
	Stokes equations	96			
	2.5.1 Existence of a regular solution for small data	97			
	2.5.2 Existence of weak solutions for barotropic flow	98			

- Finite difference and finite volume methods for non-3 linear hyperbolic systems and the Euler equations
 - Further properties of the Euler equations 3.1
 - The Euler equations 3.1.1
 - Diagonalization of the Jacobi matrix 3.1.2
 - 3.1.3 Rotational invariance of the Euler equations in 3D
 - Hyperbolicity of the Euler equations in 3D 3.1.4
 - The 2D case 3.1.5
 - 3.1.6 Solution of the Riemann problem for 1D Euler equations
 - 3.1.7 Solution of the Riemann problem for the split **3D** Euler equations
 - Numerical methods for hyperbolic systems with one 3.2space variable
 - Example of a nonconservative scheme 3.2.1
 - Semidiscretization in space 3.2.2

ix

3.2.3	Space-time nonuniform grid	145
3.2.4	Qualitative properties of numerical schemes for	
	conservation laws	145
3.2.5	Order of the scheme	146
3.2.6	Stability of the scheme	147
3.2.7	Stability in a nonlinear case	149
3.2.8	Lax–Friedrichs scheme	150
3.2.9	Stability of the Lax–Friedrichs scheme	150
3.2.10	Lax–Wendroff scheme	154
3.2.11	Stability of the Lax–Wendroff scheme	155
3.2.12	The Godunov method	156
3.2.13	Riemann solver for a scalar equation	156

19

	3.2.14 Engquist–Osher scheme	157
	3.2.15 Riemann numerical flux for a linear system	158
	3.2.16 Riemann solver for a nonlinear hyperbolic sys-	
	tem	162
	3.2.17 Flux vector splitting schemes for the Euler equa-	
	tions with one space variable	162
	3.2.18 The Roe scheme	164
	3.2.19 Consistency of the schemes	172
	3.2.20 Linear stability of flux vector splitting schemes	172
	3.2.21 Higher order schemes	172
	3.2.22 ENO and WENO schemes	178
3.3	The finite volume method for the multidimensional Eu-	
	ler equations	183
	3.3.1 Finite volume mesh	185
	3.3.2 Derivation of a general finite volume scheme	195
	3.3.3 Properties of the numerical flux	197
	3.3.4 Construction of some numerical fluxes	197
	3.3.5 Another construction of the multidimensional	
	numerical flux	198
	3.3.6 Boundary conditions	199
	3.3.7 Stability of the finite volume schemes	203
	3.3.8 FV schemes on 2D uniform rectangular meshes	204
	3.3.9 Von Neumann linear stability	205
	3.3.10 Application to the Lax-Friedrichs scheme	206
	3.3.11 Extension of the stability conditions to the Eu-	
	ler equations	211
	3.3.12 Convergence of the finite volume method	212
	3.3.13 Entropy condition	213
	3.3.14 Implicit FV methods	215
3.4	Osher–Solomon scheme	219
	3.4.1 Approximate Riemann solver	220
	3.4.2 The Jacobi matrix of f_1	221
	3.4.3 Riemann invariants	222
	3.4.4 Integration of the eigenvectors r_{ℓ}	223
	3.4.5 Integration path in the admissible state set	224
	3.4.6 Osher–Solomon approximate Riemann solver	225
	3.4.7 Inlet/outlet boundary conditions	227
	3.4.8 Solid wall boundary conditions	232
	3.4.9 Osher–Solomon scheme for the 2D Euler equa-	
	tions	233
3.5	Higher order finite volume schemes	235
	3.5.1 General form of a 'second order' MUSCL-type	
	FV scheme	235
	3.5.2 Computation of the approximate gradient	236

	3.5.3	Linear extrapolation	238
	3.5.4	Limitation procedure	238
	3.5.5	The choice of variables u_{ℓ}	239
	3.5.6	Test of the accuracy of MUSCL-type schemes	240
3.6	Adapt	ive methods	243
	3.6.1	Geometrical data structure	243
	3.6.2	Adaptation algorithm	244
	3.6.3	Mesh refinement	245
	3.6.4	Adaptation techniques based on constant recov-	
		ery	249
	3.6.5	Adaptation techniques based on linear recovery	257
	3.6.6	Data reinitialization for the mesh refinement	259
	3.6.7	Anisotropic mesh adaptation	259
	3.6.8	Data reinitialization for anisotropic mesh refine-	
		ment	272
3.7	Exam	ples of finite volume simulations	273
	3.7.1	Shock-tube problem	275
	3.7.2	GAMM channel	277
	3.7.3	The 3D channel -10% cylindrical bump	284
	3.7.4	The 3D channel with 25% spherical bump	290
	3.7.5	Flow past NACA 0012 airfoil	296
	3.7.6	Flow past a cascade of profiles	303
	3.7.7	Scramjet	311
		Operator splitting.	010
Fin	ite eler	nent solution of compressible flow	316
4.1	Finite	element method – elementary treatment	317
	4.1.1	Elliptic problems	318
	4.1.2	Finite element discretization of the elliptic prob-	
		lem	320
	4.1.3	Convergence of the FEM	325
	4.1.4	Several additional remarks	330
	4.1.5	Parabolic problems	331
	4.1.0	Finite element discretization of the parabolic	000
		problem	333
	4.1.7	Stability and convergence	335
	4.1.8	Mass lumping	341
	4.1.9	Singularly perturbed and hyperbolic problems	341
	4.1.10	Streamline diffusion method	346
	4.1.11	Discontinuous Galerkin FEM for a linear hyper-	
		bolic problem	356
	4.1.12	Adaptive mesh refinement and a posteriori error	
		estimates	361
4.2	Finite	element solution of viscous barotropic flow	367
	4.2.1	Continuous problem	367

4

	4.2.2	Discrete problem	369
	4.2.3	Existence and uniqueness of the approximate	1.58
		solution	370
	4.2.4	Discrete problem with nonhomogeneous bound-	
		ary conditions	372
4.3	Finite	e element solution of a heat-conductive gas flow	375
	4.3.1	Continuous problem	376
	4.3.2	Symmetrization of the Euler and Navier-Stokes	
		equations	383
	4.3.3	Galerkin finite element space semidiscretization	
		and its stabilization	385
	4.3.4	Analysis of a linear model system with one space	
		variable	388
	4.3.5	Multidimensional problems	393
	4.3.6	Time discretization	403
4.4	Comb	oined finite volume-finite element method for vis-	
	33.3.4	cous compressible flow	407
	4.4.1	Computational grids	408
	4.4.2	FV and FE spaces	409
	4.4.3	Space semidiscretization of the problem	412
	4.4.4	Time discretization	415
	4.4.5	Realization of boundary conditions in the con-	
		vective form b_h	416
	4.4.6	Operator splitting	416
	4.4.7	Applications of the combined FV–FE methods	419
	4.4.8	Computation of the drag and lift	428
4.5	Theor	ry of the combined FV–FE method	434
	4.5.1	Continuous problem	435
	4.5.2	Semi-implicit method combining dual finite vol-	
		umes with conforming finite elements	439
	4.5.3	Convergence of the semi-implicit scheme	443
	4.5.4	Explicit method combining conforming finite el-	
		ements with dual finite volumes	452
	4.5.5	Combination of barycentric finite volumes with	
		nonconforming finite elements	458
4.6	Disco	ntinuous Galerkin finite element method	465
	4.6.1	DGFEM for a scalar conservation law with one	
		space variable	 466
	4.6.2	Realization of the discrete problem	469
	4.6.3	Investigation of the order of the DGFEM	470
	4.6.4	DGFEM for multidimensional problems	475
	4.6.5	An example of implementation	479
	4.6.6	Problem with periodic boundary conditions	481
	4.6.7	Limiting of the order of accuracy	482

xii

		CONTEN	ГS	xiii
	4.6.8	Approximation of the bou	Indary	489
	4.6.9	DGFEM for convection-d	iffusion problems and	
		viscous flow		492
	4.6.10	Numerical examples		501
Refere	nces			507
Index				529
	in the second			
		iustry, medicing, blokogy,		

and and a characterized as a branch of theoretical physics. The fundamenencouper and equations of field dynamics are connected with the names of treates. Euler, Cauchy, Lagrange, Bernoulli, Huygens, d'Alembert, Kirchhoff, Telebolite, Lamb, Stokes, Navier and others and belong to the area of classical actional mechanics. Therefore, it is natural that fluid dynamics uses extensive matical tools, particularly partial differential equations, and can also be encoded as a mathematical science.

the spinned of Now can be obtained in two ways.

the the aid of experiments, which may give a realistic picture of real flow, a maker of cases the experimental investigation of a flow requires great cost, and hy and sometimes impossible, such as in the flow around space vehicles a power of a loss-of-coolant actident in a suclear reactor.

The second differential models. Most finid dynamical models are repted by a system of partial differential equations expressing the fundamental mass-relation of mass, momentum and energy, completed by constitutive and hermodynamical laws, together with boundary and mittal could-

A section of a solution, its stability, continuous dependence on data, etc. portant because of the validation of the adaptacy and correctness of and to explain important qualitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow processes. A practical point of view, quantitative features of flow play a major role of the subject of computational flow dynamics, abbreviated as CFD. The unifield of science is to obtain a realistic qualitative and quantitative imter with the aid of modern numerical methods, computational algorithms.