CONTENTS

vii

 $\mathbf{2}$

3

11

17

17

PREFACE

CHAPTER I. PRELIMINARIES

- 1. Notation
- 2. Nature and purpose of differential geometry
- 3. Concept of mapping. Coordinates in Euclidean space
- 4. Vectors in Euclidean space
- 5. Basic rules of vector calculus in Euclidean space

CHAPTER II. THEORY OF CURVES

- 6. The concept of a curve in differential geometry
- 7 Further remarks on the concept of a aurice

7.	Further remarks on the concept of a curve	20
8.	Examples of special curves	23
9.	Arc length	25
10.	Tangent and normal plane	29
11.	Osculating plane	31
12.	Principal normal, curvature, osculating circle	34
13.	Binormal. Moving trihedron of a curve	36
14.	Torsion	37
15.	Formulae of Frenet	40
16.	Motion of the trihedron, vector of Darboux	43
17.	Spherical images of a curve	46
18.	Shape of a curve in the neighbourhood of any of its points (canonical	
	representation)	47
19.	Contact, osculating sphere	49
20.	Natural equations of a curve	55
21.	Examples of curves and their natural equations	60
22.	Involutes and evolutes	64
23.	Bertrand curves	67

CHAPTER III. CONCEPT OF A SURFACE. FIRST FUNDA-

MENTAL FORM. FOUNDATIONS OF TENSOR-CALCU	JLUS 72
24. Concept of a surface in differential geometry	72
25. Further remarks on the representation of surfaces, examples	76
26. Curves on a surface, tangent plane to a surface	79
27. First fundamental form. Concept of Riemannian geometry. Su tion convention	1mma- 82
28. Properties of the first fundamental form	85
29. Contravariant and covariant vectors	88
30. Contravariant, covariant, and mixed tensors	93

CONTENTS

31. Basic rules of tensor calculus	99
32. Vectors in a surface. The contravariant metric tensor	101
33. Special tensors	105
34. Normal to a surface	107
35. Measurement of lengths and angles in a surface	109
36. Area	111
37. Remarks on the definition of area	115
CHAPTER IV. SECOND FUNDAMENTAL FORM. GAUSSIAN	
AND MEAN CURVATURE OF A SURFACE	118
38. Second fundamental form	118
39. Arbitrary and normal sections of a surface. Meusnier's theorem. Asymptotic lines	121
40. Elliptic, parabolic, and hyperbolic points of a surface	124
41. Principal curvature. Lines of curvature. Gaussian and mean curvature	128
42. Euler's theorem. Dupin's indicatrix	132
43. Torus	135
44. Flat points. Saddle points of higher type	136
45. Formulae of Weingarten and Gauss	138
46. Integrability conditions of the formulae of Weingarten and Gauss. Curvature tensors. Theorema egregium	142
47. Properties of the Christoffel symbols	148
48. Umbilics	152
CHAPTER V. GEODESIC CURVATURE AND GEODESICS	154
49. Geodesic curvature	154
50. Geodesics	157
51. Arcs of minimum length	160
52. Geodesic parallel coordinates	162
53. Geodesic polar coordinates	165
54. Theorem of Gauss-Bonnet. Integral curvature	168
55. Application of the Gauss-Bonnet theorem to closed surfaces	172

CHAPTER VI. MAPPINGS

xii

175

0	nAP	TER VI. MALLINGS	110
	56.	Preliminaries	175
	57.	Isometric mapping. Bending. Concept of intrinsic geometry of a surface	176
	58.	Ruled surfaces, developable surfaces	179
	59.	Spherical image of a surface. Third fundamental form. Isometric mapping of developable surfaces	186
	60.	Conjugate directions. Conjugate families of curves. Developable sur- faces contacting a surface	190
	61.	Conformal mapping	193
	62.	Conformal mapping of surfaces into a plane	195

	CONTENTS	xiii
63.	Isotropic curves and isothermic coordinates	198
64.	The Bergman metric	200
65.	Conformal mapping of a sphere into a plane. Stereographic and Mer- cator projection	204
66.	Equiareal mappings	208
67.	Equiareal mapping of spheres into planes. Mappings of Lambert,	
	Sanson, and Bonne	210
68.	Conformal mapping of the Euclidean space	212
Снар	TER VII. ABSOLUTE DIFFERENTIATION AND	
P	ARALLEL DISPLACEMENT	219
69.	Concept of absolute differentiation	219
70.	Absolute differentiation of tensors of first order	220
71.	Absolute differentiation of tensors of arbitrary order	223
72.	Further properties of absolute differentiation	225
73.	Interchange of the order of absolute differentiation. The Ricci identity	226
74.	Bianchi identities	229
75.	Differential parameters of Beltrami	229
76.	Definition of the displacement of Levi-Cività	231
77.	Further properties of the displacement of Levi-Cività	236
78.	A more general definition of absolute differentiation and displacement of Levi-Cività	239
Снар	TER VIII. SPECIAL SURFACES	243
79.	Definition and simple properties of minimal surfaces	243
80.	Surfaces of smallest area	244
81.	Examples of minimal surfaces	246
82.	Relations between function theory and minimal surfaces. The formulae of Weierstrass	250
83.	Minimal surfaces as translation surfaces with isotropic generators	253
84.	Modular surfaces of analytic functions	255
85.	Envelope of a one-parameter family of surfaces	262
86.	Developable surfaces as envelopes of families of planes	268
87.	Envelope of the osculating, normal, and rectifying planes of a curve, polar surface	270
88.	Centre surfaces of a surface	273
89.	Parallel surfaces	277
90.	Surfaces of constant Gaussian curvature	279
91.	Isometric mapping of surfaces of constant Gaussian curvature	280
92.	Spherical surfaces of revolution	282
93.	Pseudospherical surfaces of revolution	285
94.	Geodesic mapping	290
95.	Geodesic mapping of surfaces of constant Gaussian curvature	291
96.	Surfaces of constant Gaussian curvature and non-Euclidean geometry	293

xiv CONTENTS ANSWERS TO PROBLEMS 301 COLLECTION OF FORMULAE 328 BIBLIOGRAPHY 343 INDEX 348

99. Baurilies of erroriant damagen carval and the second mailered and an inclusion and the second second second 91. Isquasteld mapping of mutating of equivant formation converting and the second of the second of