xi

# Part I Basic Concepts 1

Hardware and Applications; Synchronization; Program Properties

# **Chapter 1** Sequential Programming 7

Dhaing Philes phars, Readers and Writes

4.2 Basic Uses and Programming Technicas

# 1.1 Language Notation 7 Declarations; Statements; Procedures

**1.2 Logic, Propositions, and Predicates 14** Formal Logical Systems; Propositions; Predicates

**1.3 A Programming Logic 23** Axioms; Inference Rules

# 1.4 Proofs in Programming Logic 31 Proof Outlines; Equivalence and Simulation

# **1.5 Program Derivation 36**

Weakest Preconditions; Weakest Preconditions of Statements; Linear Search Revisited; Sorting

Historical Notes and References 47 Exercises 49

**Chapter 2** Concurrency and Synchronization 57

2.1 Specifying Concurrent Execution 57

2.2 Atomic Actions and Synchronization 59 Fine-Grained Atomicity; Specifying Synchronization

**2.3 Semantics of Concurrent Execution 64** 

#### xii

# 2.4 Techniques for Avoiding Interference 67 Disjoint Variables; Weakened Assertions; Global Invariants; Synchronization

2.5 Auxiliary Variables 78

2.6 Safety and Liveness Properties 81 Proving Safety Properties; Scheduling Policies and Fairness

Historical Notes and References 86 Exercises 89

**Part II Shared Variables 95** 

# **Chapter 3 Fine-Grained Synchronization 97**

- 3.1 The Critical Section Problem 98 A Coarse-Grained Solution; Spin Locks: A Fine-Grained Solution; Implementing Await Statements
- **3.2 Critical Sections: Tie-Breaker Algorithm 107** A Coarse-Grained Solution; A Fine-Grained Solution; An N-Process Solution
- **3.3 Critical Sections: Ticket Algorithm 112** Coarse-Grained Solution; Fine-Grained Solutions
- **3.4 Critical Sections: Bakery Algorithm 115** Coarse-Grained Solution; A Fine-Grained Solution
- **3.5 Barrier Synchronization 120** Shared Counter; Flags and Coordinators; Symmetric Barriers

**3.6 Data Parallel Algorithms 127** Parallel Prefix Computations; Operations on Linked Lists; Grid Computations; Synchronous Multiprocessors

3.7 On-The-Fly Garbage Collection 134 Problem Specification; Solution Outline; A Coarse-Grained Solution; A Fine-Grained Solution

**3.8 Implementing Processes 146** A Single-Processor Kernel; A Multiprocessor Kernel

Historical Notes and References 155 Exercises 159

# **Chapter 4 Semaphores 171**

- 4.1 Notation and Semantics 172
- 4.2 Basic Uses and Programming Techniques 175 Critical Sections: Changing Variables; Barriers: Signaling Events; Producers and Consumers: Split Binary Semaphores; Bounded Buffers: Resource Counting
- 4.3 Selective Mutual Exclusion 189 Dining Philosophers; Readers and Writers
- 4.4 General Condition Synchronization 197 Readers and Writers Revisited; The Technique of Passing the Baton;



Readers and Writers Solution; Alternative Scheduling Policies

4.5 Resource Allocation 204

Problem Definition and General Solution Pattern; Shortest-Job-Next Allocation

4.6 Implementation 210

Historical Notes and References 212 Exercises 214

**Chapter 5 Conditional Critical Regions 225** 

5.1 Notation and Semantics 226 Examples; Inference Rules; Safety and Liveness Properties

- 5.2 Dining Philosophers Revisited 232
- 5.3 Readers/Writers Revisited 235

Readers' Preference Solution; Writers' Preference Solution

5.4 Interprocess Communication 238 Bounded Buffer With Exclusive Access; Bounded Buffer With Concurrent Access

5.5 Scheduling and Resource Allocation 242

5.6 Implementations 245

Using Busy Waiting; Using Semaphores with Passing the Baton; Using Semaphores with Rem's Algorithm; Using a Kernel

Historical Notes and References 254 Exercises 255

#### xiv

### **Chapter 6 Monitors 263**

- 6.1 Programming Notation 264 Synchronization in Monitors; Additional Operations on Condition Variables
- 6.2 Formal Semantics and Program Proofs 271 Axioms and Proof Obligations; A Procedure Call Inference Rule; Safety and Liveness Properties; An Example: Readers and Writers

#### 6.3 Synchronization Techniques 283

Interval Timer: Covering Conditions and Priority Wait; A Fair Semaphore: Passing the Condition; The Sleeping Barber Problem: Rendezvous

6.4 Disk Scheduling: Program Structures 295 Scheduler as a Separate Monitor; Scheduler as an Intermediary

6.5 Alternative Approaches to Synchronization 305 Alternative Signaling Disciplines; Equivalence of the Signaling Disciplines; Differences Between the Signaling Disciplines; Alternatives to Mutual Exclusion; Path Expressions

6.6 Implementations 319 Using Semaphores; Using a Kernel

Historical Notes and References 325 Exercises 329

# Part III Message Passing 339

**Chapter 7** Asynchronous Message Passing 343

7.1 Programming Notation 344

7.2 Formal Semantics 346 Axioms and Satisfaction Proofs; Auxiliary Variables and Non-Interference; An Example; Safety and Liveness Properties

7.3 Filters: A Sorting Network 355

#### 7.4 Clients and Servers 359 Active Monitors; A Self-Scheduling Disk Driver;

File Servers: Conversational Continuity

### 7.5 Heartbeat Algorithms 370

Network Topology: Shared-Variable Solution; Network Topology: Distributed Solution

# 7.6 Probe/Echo Algorithms 376 Broadcast in a Network; Network Topology Revisited

# 7.7 Broadcast Algorithms 383

Logical Clocks and Event Ordering; Distributed Semaphores

7.8 Token-Passing Algorithms 388 Distributed Mutual Exclusion; Termination Detection in a Ring; **Termination Detection in a Graph** 

- 7.9 Replicated Servers 396 **Replicated Files; Replicated Workers: Adaptive Quadrature**
- 7.10 Implementations 402 Shared-Memory Kernel; Distributed Kernel

**Historical Notes and References 410 Exercises** 415

**Chapter 8** Synchronous Message Passing 423

8.1 Programming Notation 424 **Communication Statements; Guarded Communication** 

8.2 Formal Semantics 429

Axioms, Inference Rules, and Satisfaction Proofs; Auxiliary Variables and Non-Interference; An Example; Safety and Liveness Properties

#### 8.3 Networks of Filters 439

**Prime Number Generation:** The Sieve of Eratosthenes; Matrix/Vector Multiplication

#### 8.4 Interacting Parallel Processes 443

Parallel Sorting: A Heartbeat Algorithm; **Parallel Prefix Computations;** Matrix Multiplication: Broadcast Algorithm; Matrix Multiplication: Heartbeat Algorithm

### xvi

#### 8.5 Clients and Servers 453

Resource Allocation; File Servers and Conversational Continuity; Centralized Dining Philosophers; Decentralized Dining Philosophers

#### 8.6 Implementations 460

Centralized Clearing House; Decentralized Implementations

Historical Notes and References 472 Exercises 474

# **Chapter 9 RPC and Rendezvous 483**

9.1 Remote Procedure Call 484

Synchronization in Modules; A Time Server; Caches in a Distributed File System; A Sorting Network of Merge Filters; Formal Semantics

#### 9.2 Rendezvous 494

Client/Server Examples; A Sorting Network of Merge Filters; Formal Semantics; An Example Proof; Safety and Liveness Properties

# 9.3 A Multiple Primitives Notation 509 Invoking and Servicing Operations; Examples; Formal Semantics

# 9.4 Clients and Servers 515

Readers/Writers Revisited: Encapsulated Access; Replicated Files; Network Topology Using Probe/Echo Algorithms

# 9.5 Parallel Algorithms 522

Region Labeling: A Heartbeat Algorithm;

The Traveling Salesman Problem: Replicated Workers

#### 9.6 Implementations 529

RPC in a Kernel; Rendezvous Using Asynchronous Message Passing; Multiple Primitives in a Kernel

Matrix Vector Multiplication

8.4 Interesting Parallel Processes 448 ....

Historical Notes and References 540 Exercises 543

#### xvii

# Part IV Practice 551

# **Chapter 10** Language Overviews 553

**10.1 Turing Plus: Monitors 555 Program Structure; Process Interaction; Example:** File Difference Checker

**10.2 Occam: Synchronous Message Passing 561 Program Structure; Sequential and Parallel Constructors;** Communication and Synchronization; **Example:** Prime Number Sieve

# 10.3 Ada: Rendezvous 567

Program Components; Communication and Synchronization; **Example: The Dining Philosophers** 

#### **10.4 SR: Multiple Primitives 575**

Program Components; Communication and Synchronization; **Example: The Traveling Salesman Problem** 

Maszy different language menhautens have been proceed for eneritying

# **10.5 Linda: Distributed Data Structures 581 Tuple Space and Process Interaction; Example: Prime Numbers with Replicated Workers**

**10.6 Comparison and Performance 588** Performance Experiments; Interpretation of Results

**Historical Notes and References 593 Exercises 598** 

**Glossary** 603

# **Bibliography 607**

Index 627