
CONTENTS

Introduction XV

I Names and Data Elements 1

1.1 Names 2
1.1.1 Watch the Length of Names 2
1.1.2 Avoid All Special Characters in Names 3
1.1.3 Avoid Quoted Identifiers 4
1.1.4 Enforce Capitalization Rules to Avoid

Case-Sensitivity Problems 6
1.2 Follow the ISO-11179 Standards Naming Conventions 7

1.2.1 ISO-11179 for SQL 8
1.2.2 Levels of Abstraction 9
1.2.3 Avoid Descriptive Prefixes 10
1.2.4 Develop Standardized Postfixes 12
1.2.5 Table and View Names Should Be Industry Standards,

Collective, Class, or Plural Nouns 14
1.2.6 Correlation Names Follow the Same Rules as Other

Names... Almost 15
■ F ■ in 90 . . . - mule - 11.2.7 Relationship Table Names Should Be Common

Descriptive Terms | 17
1.2.8 Metadata Schema Access Objects Can Have Names That

Include Structure Information 18
1.3 Problems in Naming Data Elements 18

1.3.1 Avoid Vague Names 18
1.3.2 Avoid Names That Change from Place to Place 19
1.3.3 Do Not Use Proprietary Exposed Physical Locators 21

2 Fonts, Punctuation, and Spacing 23

2.1 Typography and Code 23
2.1.1 Use Only Upper- and Lowercase Letters, Digits, and

Underscores for Names 25
2.1.2 Lowercase Scalars Such as Column Names, Parameters,

and Variables 25

vi CONTENTS —F

2.1.3 Capitalize Schema Object Names 26
2.1.4 Uppercase the Reserved Words 26
2.1.5 Avoid the Use of CamelCase 29

2.2 Word Spacing 30
2.3 Follow Normal Punctuation Rules 31
2.4 Use Full Reserved Words 33
2.5 Avoid Proprietary Reserved Words if a Standard Keyword Is

Available in Your SQL Product 33
2.6 Avoid Proprietary Statements if a Standard Statement Is Available 34
2.7 Rivers and Vertical Spacing 37
2.8 Indentation 38
2.9 Use Line Spacing to Group Statements 39

3 Data Declaration Language 41

3.1 Put the Default in the Right Place 41
3.2 The Default Value Should Be the Same Data

Type as the Column 42
3.3 Do Not Use Proprietary Data Types 42
3.4 Place the PRIMARY KEY Declaration at the Start of the

CREATE TABLE Statement 44
3.5 Order the Columns in a Logical Sequence and Cluster Them

in Logical Groups 44
3.6 Indent Referential Constraints and Actions under the Data Type 45
3.7 Give Constraints Names in the Production Code 46
3.8 Put CHECK() Constraint Near what they Check 46

3.8.1 Consider Range Constraints for Numeric Values 47
3.8.2 Consider LIKE and SIMILAR TO Constraints for

Character Values 47
3.8.3 Remember That Temporal Values Have Duration 48
3.8.4 REAL and FLOAT Data Types Should Be Avoided 48

3.9 Put Multiple Column Constraints as Near to Both Columns
as Possible 48

3.10 Put Table-Level CHECK() Constraints at the End of the
Table Declaration 49

3.11 Use CREATE ASSERTION for Multi-table Constraints 49

CONTENTS ix

3.12 Keep CHECK() Constraints Single Purposed 50
3.13 Every Table Must Have a Key to Be aTable 51

• 3.13.1 Auto-Numbers Are Not Relational Keys 52
3.13.2 Files Are Not Tables 53
3.13.3 Look for the Properties of a Good Key 54

3.14 Do Not Split Attributes 62
3.14.1 Split into Tables 63
3.14.2 Split into Columns 63
3.14.3 Split into Rows 65

3.15 Do Not Use Object-Oriented Design for an RDBMS 66
3.15.1 A Table Is Not an Object Instance 66
3.15.2 Do Not Use EAV Design for an RDBMS 68

4 Scales and Measurements 69

4.1 Measurement Theory 69
4.1.1 Range and Granularity 71
4.1.2 Range 72
4.1.3 Granularity, Accuracy, and Precision 72

4.2 Types of Scales 73
4.2.1 Nominal Scales 73
4.2.2 Categorical Scales 73
4.2.3 Absolute Scales 74
4.2.4 Ordinal Scales 74
4.2.5 Rank Scales 75
4.2.6 Interval Scales 76
4.2.7 Ratio Scales 76

4.3 Using Scales 77
4.4 Scale Conversion 77
4.5 Derived Units 79
4.6 Punctuation and Standard Units 80
4.7 General Guidelines for Using Scales in a Database 81

5 Data Encoding Schemes 83

5.1 Bad Encoding Schemes 84
5.2 Encoding Scheme Types 86

CONTENTS

5.2.1 Enumeration Encoding 86
5.2.2 Measurement Encoding 87
5.2.3 Abbreviation Encoding 87
5.2.4 | Algorithmic Encoding 88
5.2.5 Hierarchical Encoding Schemes 89
5.2.6 Vector Encoding 90
5.2.7 Concatenation Encoding 91

5.3 General Guidelines for Designing Encoding Schemes 92
5.3.1 Existing Encoding Standards 92
5.3.2 Allow for Expansion 92
5.3.3 Use Explicit Missing Values to Avoid NULLs 92
5.3.4 Translate Codes for the End User 93
5.3.5 Keep the Codes in the Database 96

5.4 Multiple Character Sets 97

6 Coding Choices 99

6.1 Pick Standard Constructions over
Proprietary Constructions100
6.1.1 Use Standard OUTER JOIN Syntax 101
6.1.2 Infixed INNER JOIN and CROSS JOIN Syntax

Is Optional, but Nice 105
6.1.3 Use ISO Temporal Syntax 107
6.1.4 Use Standard and Portable Functions 108

6.2 Pick Compact Constructions over Longer Equivalents 109
6.2.1 Avoid Extra Parentheses 109
6.2.2 Use CASE Family Expressions 110
6.2.3 Avoid Redundant Expressions 113
6.2.4 Seek a Compact Form 114

6.3 Use Comments 118
6.3.1 Stored Procedures 119
6.3.2 Control Statement Comments 119
6.3.3 Comments on Clause 119

6.4 Avoid Optimizer Hints 120
6.5 Avoid Triggers in Favor of DRI Actions 120
6.6 Use SQL Stored Procedures 122

CONTENTS XI

6.7 Avoid User-Defined Functions and Extensions inside the Database 123
6.7.1 Multiple Language Problems 124
6.7.2 Portability Problems 124
6.7.3 Optimization Problems 124

6.8 Avoid Excessive Secondary Indexes 124
6.9 Avoid Correlated Subqueries 125
6.10 Avoid UNIONS 127
6.11 Testing SQL 130

6.11.1 Test All Possible Combinations of NULLs 130
6.11.2 Inspect and Test All CHECKO Constraints 130
6.11.3 Beware of Character Columns 131
6.11.4 Test for Size 131

7 How to Use VIEWS 133

7.1 VIEW Naming Conventions Are the Same as Tables 135
7.1.1 Always Specify Column Names 136

7.2 VIEWs Provide Row- and Column-Level Security 136
7.3 VIEWs Ensure Efficient Access Paths 138
7.4 VIEWs Mask Complexity from the User 138
7.5 VIEWs Ensure Proper Data Derivation 139
7.6 VIEWs Rename Tables and/or Columns 140
7.7 VIEWs Enforce Complicated Integrity Constraints 140
7.8 Updatable VIEWs 143

7.8.1 WITH CHECK OPTION clause 143
7.8.2 INSTEAD OF Triggers 144

7.9 Have a Reason for Each VIEW 144
7.10 Avoid VIEW Proliferation 145
7.11 Synchronize VIEWs with Base Tables 145
7.12 Improper Use of VIEWs 146

7.12.1 VIEWs for Domain Support 146
7.12.2 Single-Solution VIEWs 147

.05 TCU ° USLA- 10O1 D 01 - -

7.12.3 Do Not Create One VIEW Per Base Table 148
7.13 Learn about Materialized VIEWs 149

CONTENTS**
XII

1518 How to Write Stored Procedures

8.1 Most SQL 4GLs Are Not for Applications 152
8.2 Basic Software Engineering 153

8.2.1 Cohesion 153
8.2.2 Coupling 155

8.3 Use Classic Structured Programming 156
8.3.1 Cyclomatic Complexity 157

8.4 Avoid Portability Problems 158
8.4.1 Avoid Creating Temporary Tables 158
8.4.2 Avoid Using Cursors 159
8.4.3 Prefer Set-Oriented Constructs to

Procedural Code 161
8.5 Scalar versus Structured Parameters 167
8.6 Avoid Dynamic SQL 168

8.6.1 Performance 169
8.6.2 SQL Injection 169

9 Heuristics 171

9.1 Put the Specification into a Clear Statement 172
9.2 Add the Words “Set of All...” in Front of the Nouns 173
9.3 Remove Active Verbs from the Problem Statement 174
9.4 You Can Still Use Stubs 174
9.5 Do Not Worry about Displaying the Data 176
9.6 Your First Attempts Need Special Handling 177

9.6.1 Do Not Be Afraid to Throw Away Your First
Attempts at DDL 177

9.6.2 Save Your First Attempts at DML 178
9.7 Do Not Think with Boxes and Arrows 179
9.8 Draw Circles and Set Diagrams 179
9.9 Learn Your Dialect 180
9.10 Imagine That Your WHERE Clause Is “Super Ameba” 180
9.11 Use the Newsgroups and Internet 181

10 Thinking in SQL

10.1 Bad Programming in SQL and Procedural Languages

183

184

CONTENTS ***
XIII

10.2 Thinking of Columns as Fields 189
10.3 Thinking in Processes, Not Declarations 191
10.4 Thinking the Schema Should Look Like the Input Forms 194

Resources 197

Military Standards 197
Metadata Standards 197
ANSI and ISO Standards 198
U.S. Government Codes 199
Retail Industry 199
Code Formatting and Naming Conventions 200

Bibliography 203

Reading Psychology 203
Programming Considerations 204

Index

About the Author

207

217

