Contents

A. Very Common Form of the Emerge Education.

Boundary Conditions.

Preface Acknowledgments page ix xi

60

60

69

71

80

94

100

Mass Conservation and the Continuity Equation

1.1	Conservation in Fluid Mechanics	1
1.2	Conservation of Mass in One Dimension	4
1.3	The Continuity Equation	8
1.4	Discussion of the Continuity Equation	16
Prob	lems	30
The	Material Derivative: The First Step to the Navier-Stokes	
Equations		32
2.1	Lagrangrian and Eulerian Descriptions	33
2.2	The Advection and Inviscid Burgers' Equation	40
2.3	The Material Derivative and the Continuity Equation	51
2.4	The Material Derivative in the Navier-Stokes Equations	55
2.5	Take Home Points	57
Problems		58

Force Balance, the Stress Tensor, and the Navier–Stokes

Equations

3

- 3.1 Forces on a Fluid and the Stress Tensor
- 3.2 General Force Balance: Cauchy's First Law of Motion

vii

- 3.3 The Form of the Stress Tensor
- 3.4 The Navier-Stokes Equations ... Finally
- 3.5 Incompressible Flow

Problems

The	Navier-Stokes Equations: Another Approach		102
4.1	Eulerian Approach to the Navier-Stokes Equation	IS	102
4.2	Take a Breath: Let's Review So Far		108
4.3	Incompressible Equations in 2D Cartesian Coordi	nates	112
4.4	Boundary Conditions		114
4.5	Examples		116
Prob	olems		122
The	Energy Equation and a Discussion on Diffusion		
and	Advection		124
5.1	Conservation of Energy		124
5.2	A Very Common Form of the Energy Equation		140
5.3	Initial Discussion of the Energy Equation		147
5.4	Full Governing Equations of Fluid Motion		153
5.5	Diffusion		155
5.6	Convection-Diffusion Equation: Combined Adve	ction	
	and Diffusion		162
5.7	The Boundary Layer		165
5.8	Boundary Conditions for the Energy Equation		173
5.9	Examples		174
Prob	lems		180
Non	dimensionalization and Scaling		182
6.1	The Idea Behind Nondimensionalization		182
6.2	The Basics of Scaling Analysis		183
6.3	Couette Flow Revisited with Nondimensionalizati	on	189
6.4	Pressure-driven Flow with Nondimensionalization		194
6.5	Scaling the Incompressible Governing Equations		199
6.6	Incompressible Flow with a Compressible Fluid		205
6.7	Scaling to Obtain the Boundary Layer Equations		208
6.8	A Final Note		216
Prob	Problems		218

