CONTENTS space 20 shawoh's First Law and Inertial Systems 2.9 Applying Newton's Laws

anolisupe is in a line with the second with the second of the second on the second of the second second second

CONTENTS

1 M

of Two- and

88

116

145 .

PREFACE TO THE TEACHER LIST OF EXAMPLES

Gravityneldorf

page xi xv xvii

2

2

3

4

8

VEC	TORS AND KINEMATICS
1.1	Introduction
1.2	Vectors
1.3	The Algebra of Vectors
1.4	Multiplying Vectors
1.5	Components of a Vector

1.6 Base Vectors	11
1.7 The Position Vector r and Displacement	12
1.8 Velocity and Acceleration	14
1.9 Formal Solution of Kinematical Equations	19
1.10 More about the Time Derivative of a Vector	22
1.11 Motion in Plane Polar Coordinates	26
Note 1.1 Approximation Methods	36
Note 1.2 The Taylor Series	37
Note 1.3 Series Expansions of Some Common	
Functions	38
Note 1.4 Differentials	39
Note 1.5 Significant Figures and Experimental	
Uncertainty	40
Problems	41

2	NEW	TON'S LAWS	47
	2.1	Introduction	48
	2.2	Newtonian Mechanics and Modern Physics	48
	2.3	Newton's Laws	49
	2.4	Newton's First Law and Inertial Systems	51
	2.5	Newton's Second Law	51
	2.6	Newton's Third Law	54
	2.7	Base Units and Physical Standards	59
	2.8	The Algebra of Dimensions	63
	2.9	Applying Newton's Laws	64
	2.10	Dynamics Using Polar Coordinates	72
	Probl	ems	77
3	FOR	CES AND EQUATIONS OF MOTION	81
	3.1	Introduction	82
	3.2	The Fundamental Forces of Physics	82
	3.3	Gravity	83
	3.4	Some Phenomenological Forces	89
	3.5	A Digression on Differential Equations	95
	3.6	Viscosity	98
	3.7	Hooke's Law and Simple Harmonic Motion	102
	Note	3.1 The Gravitational Force of a Spherical Shell	107
	Probl	ems	110
4	MOM	ENTUM	115
	4.1	Introduction	116
	4.2	Dynamics of a System of Particles	116
	4.3	Center of Mass	119
	4.4	Center of Mass Coordinates	124
	4.5	Conservation of Momentum	130
	4.6	Impulse and a Restatement of the Momentum	101
	17	Momentum and the Elaw of Mass	131
	4.7	Pocket Metion	100
Apilanajeis	4.0	Momentum Flow and Force	142
	4.9	Momentum Flux	145
Time Decivative	A.TO	1 1 Center of Mass of Two- and	145
	NOLE	Three-dimensional Objects	151
	Probl	ems	155
5	5 ENERGY		161
merous of some	5.1	Introduction	162
	5.2	Integrating Equations of Motion in One Dimension	162
	5.3	Work and Energy	166
	5.4	The Conservation of Mechanical Energy	179
	5.5	Potential Energy	182
	5.6	What Potential Energy Tells Us about Force	185

-

	5.7 Energy Diagrams	185
	5.8 Non-conservative Forces	187
	5.9 Energy Conservation and the Ideal Gas Law	189
arentasting Systems	5.10 Conservation Laws	192
if Equivalance	5.11 World Energy Usage	194
	Note 5.1 Correction to the Period of a Pendulum	199
	Note 5.2 Force. Potential Energy, and the Vector	
	Operator ∇	200
	Problems	205
	13.5. The Photon A Massless Particle'	488.//
6	TOPICS IN DYNAMICS	211
	6.1 Introduction	212
	6.2 Small Oscillations in a Bound System	212
	6.3 Stability	217
	6.4 Normal Modes	219
	6.5 Collisions and Conservation Laws	225
	Problems	233
	14 A Haskelant in Spacetime	
the Trbit Integral	ANGULAR MOMENTUM AND FIXED AXIS ROTATION	239
of the Ellipse	7.1 Introduction	240
	7.2 Angular Momentum of a Particle	241
	7.3 Fixed Axis Rotation	245
	7.4 Torque	250
	7.5 Torque and Angular Momentum	252
Bid Motion: Review	7.6 Dynamics of Fixed Axis Rotation	260
	7.7 Pendulum Motion and Fixed Axis Rotation	262
	7.8 Motion Involving Translation and Rotation	267
	7.9 The Work–Energy Theorem and Rotational	
Friefand Response in Frequency	Motion	273
	7.10 The Bohr Atom	277
EEMDation of Motor for the	Note 7.1 Chasles' Theorem	280
	Note 7.2 A Summary of the Dynamics of Fixed Axis	
Biline of Motion Inc. Inc.	Rotation	282
	Problems	282
8	RIGID BODY MOTION	291
AY OF BELATINTY	8.1 Introduction	292
	8.2 The Vector Nature of Angular Velocity and	
	Angular Momentum	292
	8.3 The Gyroscope	300
	8.4 Examples of Rigid Body Motion	304
	8.5 Conservation of Angular Momentum	310
	8.6 Rigid Body Rotation and the Tensor of Inertia	312
	8.7 Advanced Topics in Rigid Body Dynamics	320
	Note 8.1 Finite and Infinitesimal Rotations	329
Addition of Valocifies	Note 8.2 More about Gyroscopes	331
	Problems	337

4

9 NON-INERTIAL SYSTEMS AND FICTITIOUS FORCES	341
9.1 Introduction	342
9.2 Galilean Transformation	342
9.3 Uniformly Accelerating Systems	344
9.4 The Principle of Equivalence	347
9.5 Physics in a Rotating Coordinate System	356
Note 9.1 The Equivalence Principle and the	
Gravitational Red Shift	368
Problems	370
10 CENTRAL FORCE MOTION	373
10.1 Introduction	374
10.2 Central Force Motion as a One-body Problem	374

10.3 Universal Features of Central For	ce Motion 376
10.4 The Energy Equation and Energy	Diagrams 379
10.5 Planetary Motion	386
10.6 Some Concluding Comments on I	Planetary
Motion	402
Note 10.1 Integrating the Orbit Integral	403
Note 10.2 Properties of the Ellipse	405
Problems	407
	al Sher? 107
11 THE HARMONIC OSCILLATOR	411
11.1 Introduction	412
11.2 Simple Harmonic Motion: Review	412
11.3 The Damped Harmonic Oscillator	414
11.4 The Driven Harmonic Oscillator	421
11.5 Transient Behavior	425
11.6 Response in Time and Response	in Frequency 427
Note 11.1 Complex Numbers	430
Note 11.2 Solving the Equation of Motic	on for the
Damped Oscillator	431
Note 11.3 Solving the Equation of Motic	on for the
Driven Harmonic Oscillator	434
Problems	435
12 THE SPECIAL THEORY OF RELATIVIT	FY 439
12.1 Introduction	440
12.2 The Possibility of Flaws in Newton	nian Physics 440
12.3 The Michelson–Morley Experiment	nt 442
12.4 The Special Theory of Relativity	445
12.5 Transformations	447
12.6 Simultaneity and the Order of Eve	ents 450
12.7 The Lorentz Transformation	451
12.8 Relativistic Kinematics	454
12.9 The Relativistic Addition of Veloci	ties 463
12.10 The Doppler Effect	466

12.11	The Twin Paradox	470
Probl	ems	472
RELA	ATIVISTIC DYNAMICS	477
13.1	Introduction	478
13.2	Relativistic Momentum	478
13.3	Relativistic Energy	481
13.4	How Relativistic Energy and Momentum	
	are Related	487
13.5	The Photon: A Massless Particle	488
13.6	How Einstein Derived $E = mc^2$	498
Probl	ems	499
	12.11 Probl 13.1 13.2 13.3 13.4 13.5 13.6 Probl	12.11 The Twin Paradox Problems RELATIVISTIC DYNAMICS 13.1 Introduction 13.2 Relativistic Momentum 13.3 Relativistic Energy 13.4 How Relativistic Energy and Momentum are Related 13.5 The Photon: A Massless Particle 13.6 How Einstein Derived $E = mc^2$ Problems

	14	SPAC	CETIME PHYSICS	503
		14.1	Introduction	504
		14.2	Vector Transformations	504
		14.3	World Lines in Spacetime	506
		14.4	An Invariant in Spacetime	508
		14.5	Four-Vectors	509
		14.6	The Energy–Momentum Four-Vector	512
		14.7	Epilogue: General Relativity	513
		Probl	lems	515
	HINT	rs, CLL	JES, AND ANSWERS TO SELECTED	
	PRO	BLEMS	5	519
	APP	ENDIX	A MISCELLANEOUS PHYSICAL AND	
	AST	RONON	MICAL DATA	527
APPENDIX B GREEK ALPHABET				529
	APP	ENDIX	C SI PREFIXES	531

INDEX

533

mony suggestions from colleagues and we have taken this opportunity to

We need that our readers know enough elementary releases to differences and integrate simple polynomials and anyonometric hanctons we do not assume may familiarity with differential equations. Our expofence is that the granting i challenge for most students is not with an decisioning mathematical concepts but in tearning how to apply them to physical problems. This comes with practice and there is no substitute for action challenging problems. Consequently problem-solving takes high priority. We have provides numerous worked examples to help proside publicate. Where possible we try to the the examples to help proside publicate. A flock stiding down a plane is sometimes mocked as the problems. A flock stiding down a plane is sometimes mocked as the problems. A flock stiding down a plane is sometimes mocked as the problem. A flock stiding down a plane is sometimes mocked as the problems. A flock stiding down a plane is sometimes mocked as the problems. A flock stiding down a plane is sometimes mocked as the problems. A flock stiding down a plane is sometimes mocked as the plane to ac-