Contents

	Preface	V
1	Section 1: Mineral-microbe interactions J. D. Cotter-Howells	1
	 1.1 Introduction 1.2 Biological processes and minerals 1.3 Future directions 1.4 The papers 	1 1 3 3
	References	4
2	Illustrations of the occurrence and diversity of mineral-microbe interactions involved in weathering of minerals <i>J. Berthelin</i> ,	7
	C. Leyvar and C. mustin	/
	 2.1 Introduction 2.2 Main microbial dissolution and precipitation processes of 	10
	inorganic elements 2.3 Weathering and transformation of a mica under the influence of roots and of their associated microorganisms in the plant	
	rhizosphere 2.4 Interactions between <i>Thiobacillus ferrooxidans</i> and sulphide minerals (pyrite) during oxidation and dissolution	13
	(bioleaching) processes 2.5 Influence of Al and Mn substitution on the dissolution of	16
	ferric oxides (goethite) by Fe-reducing bacteria	20
	2.6 Conclusions	21
	References	23
3	Mineral dissolution by heterotrophic bacteria: principles and	
	methodologies E. Valsami-Jones and S. McEldowney	27
	3.1 Introduction	27
	3.2 The principles of mineral dissolution	28
	3.3 Bacteria as dissolution agents	29
	3.4 Methods of studying heterotrophic bacteria	37
	3.5 Field evidence of bacterial influence on mineral dissolution	44
	3.6 Laboratory studies: mechanisms	45
	3.7 Conclusions and future work	49
	Acknowledgements	52
	References	52

4	Heterotrophic solubilization of metal-bearing minerals by fungi G. M. Gadd	57
	 4.1 Introduction 4.2 Organic acid biosynthesis 	57 58
	4.3 Metal chemistry of citric and oxalic acid	59
	4.4 Fungal organic acids and metal biogeochemistry	64
	4.5 Fungal organic acid production and metal biotechnology 4.6 Conclusions	68 69
	Acknowledgements	70
	References	70
5	Weathering of rocks by lichens: fragmentation, dissolution and precipitation of minerals in a microbial microcosm M. R. Lee	77
	5.1 Introduction	77
	5.2 Background	79
	5.3 Abiotic weathering and erosion of rock surfaces	83
	5.4 A model of the lichen-rock interface	84
	5.5 Photosynthetic zone	85
	5.6 Direct biochemilithic zone	86
	 5.7 Indirect biochemilithic zone 5.8 Physicochemilitic zone 	90
	5.9 Rates of lichen-mediated weathering	96
	5.10 Summary: the impact of lichen colonization on weathering	
	rates	103
	Acknowledgements References	103 104
6	Section 2: Anthropogenic influences on mineral interactions	
	L. S. Campbell	109
	6.1 Introduction	109
	6.2 Anthropogenic influences	110
	6.3 Influences associated with the biosphere	112
	6.4 Conclusion	114
	References	114
7	Mechanisms and rates of sulphide oxidation in relation to the problems of acid rock (mine) drainage C. N. Keith and	
	D. J. Vaughan	117
	7.1 Introduction	117
	 7.2 Acid rock drainage: background to the problem 7.3 Sulphide minerals: chemistry and reactivity, oxidation 	118
	mechanisms, rates and controls	123
	7.4 Concluding remarks	135
	Acknowledgements References	136 136
	References	130

8	The relationship of mineralogy to acid- and neutralization-potential	
	values in ARD J. L. Jambor	141
	8.1 Introduction	141
	8.2 Static and kinetic tests	142
	8.3 Acid-producing potential	143
	8.4 Sulphide resistance and persistence	144
	8.5 Neutralization potential	145
	8.6 Weathering rates of minerals	146
	8.7 Relationships to ARD	150
	8.8 Conclusions	154
	Acknowledgements	155
	References	156
0	Monridd Damie Cu Dh 7n Minagu minanalagur mianahialagur and agid	
9	Mynydd Parys Cu-Pb-Zn Mines: mineralogy, microbiology and acid	161
	mine drainage D. A. Jenkins, D. B. Johnson and C. Freeman	161
	9.1 Introduction	161
	9.2 Geology and mining history	163
	9.3 Surface mineralogy and geochemistry	165
	9.4 Biology	170
	9.5 Acid mine drainage	174
	9.6 Conclusions	177
	Acknowledgements	177
	References	177
10	Decay effects associated with soluble salts on granite buildings of	
10	Braga (NW Portugal) C. A. S. Alves and M. A. Sequeira Braga	181
	Diaga (1444 i Oliugai) C. M. D. Mives and M. M. Dequeira Draga	101
	10.1 Introduction	181
	10.2 Salt weathering on buildings: a review	182
	10.3 Granite buildings of Braga: case studies	185
	10.4 Characterization of soluble salts	186
	10.5 Decay effects of soluble salts in granite buildings of Braga:	
	a discussion	194
	10.6 Conclusions	197
	Acknowledgements	198
	References	198
11	Section 3: Minerals in contaminated environments E. Valsami-Jones	201
	11.1 Introduction	201
	11.2 Mineral-pollutant interactions	201
	11.3 Environmental minerals	202
	11.4 Environmental Mineralogy and contaminated environments	203
	References	204

12		metal-bearing Mn oxides in river channel and floodplain ents K. A. Hudson-Edwards	207
	12.1	Introduction	207
	12.2	Mineralogy and heavy metal affinity of Mn oxides	208
	12.3	Mn oxides in river sediments	209
	12.4	Mn oxides in river channel and floodplain sediment in	
		northeast England	211
	12.5	Conclusions and environmental significance	221
	Ackno	wledgements	222
	Refere	nces	222
13		alation of organic and inorganic contaminants by expanding silicates W. E. Dubbin	227
	Ь		227
	13.1	Introduction	227
	13.2	Structure and properties of expandable layer silicates	228
	13.3	Intercalation of inorganic contaminants	230
	13.4	Intercalation of organic contaminants	239
	13.5	Summary	241
	Refere	nces	242
14		im behaviour in natural environments K. V. Ragnarsdottir and	
	L. Cho	arlet	245
	14.1	Introduction	245
	14.2	Physical and chemical properties of uranium	246
	14.3	Aqueous uranium chemistry	250
	14.4	Transport of uranium	257
	14.5	Sinks of uranium	266
	14.6	Uranium mines and tailings	269
	14.7	Conclusion – the uranium cycle	277
		wledgements	279
	Refere	nces	279
15	Metal	phosphates and remediation of contaminated land M . E .	
	Hodso	n, E. Valsami-Jones and J. D. Cotter-Howells	291
	15.1	Introduction	291
	15.2	Metal phosphates in the natural environment	292
	15.3	Metal phosphate solubility	294
	15.4	Metal phosphate formation in experimental systems using aqueous metal ions	298
	15.5	Metal phosphate formation in batch experiments using metal-	
	20.0	bearing solids	302
	15.6	Metal phosphate formation in soil column and field experiments	306
	15.7	Concluding remarks	308
		wledgements	308
	Refere		308

16	Section 4: Minerals and waste management L. S. Campbell	313
	16.1 Introduction	313
	16.2 Interactive characteristics of minerals	313
	16.3 Zeolites	314
	16.4 Clay minerals	314
	16.5 Carbonates	315
	16.6 Other mineral groups	315
	16.7 Conclusions	316
	Acknowledgements	316
	References	317
17	Applications of natural zeolites in the treatment of nuclear wastes and	
	fall-out A. Dyer	319
	17.1 Introduction	319
	17.2 Historical perspective	321
	17.3 Zeolites as specific ion exchangers for radioisotopes	322
	17.4 Scavenging of radioisotopes from aqueous solution	327
	17.5 Treatment of radioactive wastes from nuclear facilities	338
	17.6 Clean-up of radioactive waste from nuclear accidents and	
	fall-out	343
	17.7 Waste containment uses of natural zeolites	348
	17.8 Treatment of gaseous emissions from nuclear facilities	352
	17.9 Summary and recommendations for future research	352
	Acknowledgements	353
	References	353
18	Gas entry into unconfined clay pastes at water contents between the	
	liquid and plastic limits A. T. Donohew, S. T. Horseman and J. F.	
	Harrington	369
	18.1 Introduction	369
	18.2 Gas entry and soil suction	374
	18.3 Experiments	377
	18.4 Results	380
	18.5 Mechanisms	384
	18.6 Discussion	386
	18.7 Conclusions	389
		391
	Acknowledgements References	391
	References	391
10		
19	Geosynthetic Clay Liners (GCLs) for municipal solid waste	
	landfills R. K. Rowe and C. B. Lake	395
	19.1 Introduction	395
	19.2 Hydraulic conductivity and leachate compatibility	397
	19.3 Diffusion research	399

19.4	GCL interaction with other components of the landfill	
19.5 Referen	system Conclusion ces	404
INDEX		404

FERRIAL IN TOTAL CONTROL OF THE STATE OF THE

10119