CONTENTSINBRIEF

CHAPTER	1	The Role of Statistics, 2
CHAPTER	2	Describing Data Sets, 14
CHAPTER	3	Measures of Central Tendency and Dispersion, 52
CHAPTER	4	Principles of Probability, 120
CHAPTER	5	Probability Distributions, 184
CHAPTER	6	The Normal Distribution, 238
CHAPTER	7	Sampling Distributions: An Introduction to Inferential Statistics, 268
CHAPTER	8	Estimating with Confidence Intervals, 316
CHAPTER	9	Hypothesis Testing, 384
CHAPTER	10	Tests of Two Populations, 454
CHAPTER	11	Tests of Variances and Analysis of Variance, 510
CHAPTER	12	Simple Regression and Correlation Analysis, 578
CHAPTER	13	Multiple Regression and Correlation, 660
CHAPTER	14	Dummy Variables and Residual Analysis: Extensions of Regression and Correlation, 708
CHAPTER	15	Chi-Square and Other Nonparametric Tests, 742
CHAPTER	16	Time-Series Analysis and Forecasting, 812
CHAPTER	17	Index Numbers, 856
CHAPTER	18	Techniques of Quality Control, 886
INDEX		990
		xiii

Chapter Exercises, 103

Random Variables, 189

	B. Median, 56	Сна	PTER 4		
	C. Mode, 56		PRINCIPLES OF PROBABILITY, 120		
	D. The Weighted Mean, 57				
	E. The Geometric Mean, 59	4.1	Introduction, 122		
3.3	Measures of Central Tendency for	4.2	Experiments, Outcomes, and		
	Grouped Data, 62		Sets, 122		
	A. Mean, 62	4.3	Approaches to Probability, 124		
	B. Median, 63		A. The Relative Frequency		
	C. Mode, 64		Approach, 125		
3.4	Comparing the Mean, Median and		B. The Subjective Approach, 126		
	Mode, 66		C. The Classical Approach, 127		
3.5	Selecting the Appropriate Measure of	4.4	The Practice of Odds-Making, 129		
	Central Tendency, 67	4.5	Relationships between Events, 131		
3.6	Measures of Dispersion for Ungrouped	4.6	Unions, Intersection, and Venn		
	Data, 67		Diagrams, 133		
	A. Range, 68	4.7	Frequency Tables and Probability		
	B. Mean Absolute Deviation, 68		Tables, 134		
	C. Variance and the Standard	4.8	Two Rules of Probability, 136		
	Deviation for a Population, 70		A. The Rule of Multiplication and		
	D. Variance and Standard Deviation		Conditional Probability, 137		
	for a Sample, 73		B. Rule of Addition, 140		
3.7	Shortcut Method for Variance and		C. A Couple of Helpful Hints, 143		
	Standard Deviation, 75		D. Further Illustrations of the Two		
3.8	Other Measures of Dispersion, 76	ingite: 1s ii	Rules of Probability, 145		
3.9	Measures of Dispersion with Grouped	4.9	Probability Trees, 154		
	Data, 80	4.10	Bayes' Rule and Conditional		
	A. Percentiles with Grouped Data, 80		Probability, 156		
	B. Variance and Standard Deviation	4.11	Counting Techniques, 161		
	with Grouped Data, 82		A. Permutations, 162		
3.10	Common Uses for the Standard		B. Combinations, 163		
	Deviation, 83		C. Multiple-Choice Arrangement, 168		
	A. Chebyshev's Theorem, 84	distics, in	D. Multiplication Method, 168		
	B. The Normal Distribution and the	4.12	Solved Problems, 169		
	Empirical Rule, 84	4.13	What You Should Have Learned from		
	C. Skewness, 87		This Chapter, 175		
	D. Coefficient of Variation, 88		Symbols and Terms, 175		
3.11	A Summary of the More Important		Formulas, 175		
	Concepts, 90	Chapte	r Exercises, 177		
3.12	Solved Problems, 92				
3.13	What You Should Have Learned from		PERMISSING STALL DISTRIBUTED		
	This Chapter, 97		PTER 5		
3.14	Computer Applications, 98	PROBAL	BILITY DISTRIBUTIONS, 184		
	Symbols and Terms, 101	5.1	Introduction, 186		
	List of Formulas, 101		The Mean and Variance of Discrete		

Chapter Exercises, 264

Intervals, 320

5.3	The Binomial Distribution, 193	Сна	PTER 7
	A. Cumulative Binomial	SAMP	LING DISTRIBUTIONS: AN INTRODUCTION
	Probability, 197	TO INF	FERENTIAL STATISTICS, 268
	B. Mean and Variance of a Binomial		
	Distribution, 198	7.1	Introduction, 270
	C. Lot Acceptance Sampling, 199	7.2	Sampling Distributions, 270
	D. The Shape of the Binomial		A. The Mean of the Sample
	Distribution, 202		Means, 273
5.4	The Poisson Distribution, 203		B. The Standard Error of the
5.5	The Hypergeometic Distribution, 205		Sampling Distribution, 274
5.6	Mathematical Expectation, 208		C. The Standard Error and
5.7	Uniform Distribution, 210		Normality, 277
5.8	The Exponential Distribution, 213		D. The Impact of Sample Size on the
	A. Determining Probabilities, 214		
	B. Queuing Problems, 217	7.3	Standard Error, 278 The Central Limit Theorem 280
5.9	Solved Problems, 220	7.3	The Central Limit Theorem, 280
5.10	What You Should Have Learned from	7.4	The Finite Population Correction
	This Chapter, 226	7.5	Factor, 281
5.11	Computer Applications, 226	7.5	Using the Sampling Distribution, 284
	Symbols and Terms, 227	7.6	The Sampling Distributions for
	Formulas, 227		Proportions, 292
	er Exercises, 229	7.7	An Examination of Sampling
			Procedures, 297
	PTER 6		A. Sampling Error and Bias, 297
THE N	ORMAL DISTRIBUTION, 238		B. Simple Random Sample, 298
6.1	Introduction, 240		C. Systematic Sampling, 300
6.2	The General Nature of the Normal		D. Stratified Sampling, 300
	Distribution, 240		E. Cluster Sampling, 301
	A. A Comparison of Normal	7.8	Solved Problems, 302
	Distributions, 242	7.9	What You Should Have Learned from
	B. The Empirical Rule Revisited, 242		This Chapter, 308
	C. The Normal Deviate, 244	7.10	Computer Applications, 308
6.3	Calculating Probabilities with the	List of	Symbols and Terms, 309
0.5	Normal Deviate, 246		Formulas, 309
6.4	Calculating an X-Value from a		er Exercises, 310
0.4	Known Probability, 255		
6.5	Normal Approximation to the	CHA	PTER 8
0.7	Binomial, 258		
6.6	Solved Problems, 260		ATING WITH CONFIDENCE
6.7	What You Should Have Learned from	INTERV	ALS, 316
0.7		8.1	Introduction, 318
60	This Chapter, 263 Computer Applications, 263		A. The Principle of a Confidence
6.8	Computer Applications, 263 Symbols and Torms, 264		Interval, 319
	Symbols and Terms, 264		B. The Interpretation of Confidence
LIST OI	Formulas, 264		b. The interpretation of Confidence

8.2	Confidence Interval for the Population Mean—Large Samples, 321 A. A Known Population	List of	f Symbols and Terms, 370 f Formulas, 370
	Variance, 321	Chapt	er Exercises, 372
	B. The Probability of Error—The		
	α -Value, 327		
	C. Confidence Intervals with σ	CHA	PTER 9
	Unknown, 328		
	D. Sampling Nonnormal	пүро	THESIS TESTING, 384
	Populations, 330	9.1	Introduction, 386
8.3	Confidence Intervals for the	9.2	The Principle of Hypothesis
0.5	Population Mean—Small		Testing, 387
	Samples, 332		A. We Never "Accept" the Null
8.4	Estimating the Difference between		Hypothesis, 388
	Two Normal Population Means, 337		B. The Level of Significance and a
	A. Paired Sampling, 337	0.3	Type I Error, 389
	B. Independent Sampling, 341	9.3	Determination of the Decision
8.5	Confidence Intervals for Population	9.4	Rule, 389 Difference between a One-Tailed and
0.5	Proportions, 349	7	a Two-Tailed Test, 392
	A. Confidence Intervals for a Single	9.5	A Two-Tailed Hypothesis Test for the
	Proportion, π , 350		Population Mean—Large Sample, 393
	B. Confidence Intervals for the	9.6	A Two-Tailed Hypothesis Test for a
	Difference between Two		Population Proportion: Large
	Proportions, 352		Samples, 398
8.6	Controlling the Interval Width, 354	9.7	A Two-Tailed Hypothesis Test for the
0.0	A. Adjusting the Level of		Population Mean—Small
	Confidence, 354		Samples, 403
			A. Whan σ Is Unknown, 403
8.7	B. Adjusting the Sample Size, 355 Determining the Sample Size, 356	9.8	B. If σ Is Known, 404 One Tailed Tests for the Population
0.7		7.0	One-Tailed Tests for the Population Mean with Large Samples, 406
	A. Sample Size for μ , 357 B. Sample Size for μ , 357		A. Determination of Hypotheses in a
	B. Sample Size for $\mu_1 - \mu_2$, 358		One-Tailed Test, 406
	C. Sample Size for π , 359		B. Finding the Correct Value for Z
00	D. Sample Size for $\pi_1 - \pi_2$, 360		for a One-Tailed Test, 411
8.8	Properties of Good Estimators, 361	9.9	One-Tailed Tests for the Mean with
	A. An Unbiased Estimator, 361		Small Samples, 415
	B. An Efficient Estimator, 362	9.10	One-Tailed Tests for
	C. A Consistent Estimator, 363		Proportions—Large Samples, 417
	D. A Sufficient Estimator, 364	9.11	An Optional Method of Hypothesis
8.9	Solved Problems, 364		Testing, 420
8.10	What You Should Have Learned from		A. Calculation and Interpretation of
	This Chapter, 368		p-Values, 425

9.12	Type I and Type II Errors, 429	10.6	Solved Problems, 487
	A. Calculating β (the Probability of a	10.7	What You Should Have Learned from
	Type II Error), 430		This Chapter, 494
	B. Selecting an α -Value, 432	10.8	Computer Applications, 494
9.13	The Operating Characteristic Curve		A. Minitab, 495
	and the Power Curve, 433		B. SAS, 495
9.14	Effect of Sample Size on β , 435		C. SPSS-X, 496
9.15	Choosing the Correct Test, 435	List of	f Formulas, 496
9.16	Using Confidence Intervals to Test	Chapt	er Exercises, 499
0.17	Hypothesis, 435	CILA	PTER 11
9.17	Solved Problems, 437		
9.18	What You Should Have Learned from		OF VARIANCES AND ANALYSIS OF
0.10	This Chapter, 441	VARIA	NCE, 510
9.19	Computer Applications, 442	11.1	Introduction, 512
	Symbols and Terms, 443	11.2	Testing the Variance of a Normally
	Formulas, 444		Distributed Population:
Chapte	er Exercises, 445		Chi-Square, 514
Сна	PTER 10		A. Hypothesis Tests for a
	OF TWO POPULATIONS, 454		Variance, 515
12313	OF I WO I OPULATIONS, 474		B. Confidence Interval for the
10.1	Introduction, 456		Variance of a Normal
10.2	Differences between Two		Population, 519
	Means—Large Samples, 456	11.3	Comparing the Variances of Two
	A. One-Tailed Hypothesis Tests, 462		Normal Populations, 520
	B. When the Hypothesized	11.4	One-Way ANOVA: The Completely
	Difference Is Not Zero, 464		Randomized Design, 523
10.3	Difference between Two		A. An Illustration of ANOVA, 525
	Means—Small Samples, 466		B. The Principle behind
	A. Equal but Unknown		ANOVA, 527
	Variances, 467		C. The Sums of Squares, 529
	B. Unequal Variances, 470		D. The Mean Sums of Squares, 531
70.4	C. Paired Sampling, 473		E. An ANOVA Table, 533
10.4	A Test for the Difference between	11.5	Tests for Differences Between
	Two Proportions—Large Samples, 478		Individual Pairs, 536
	A. Basing the Test on Zero, 478		A. Test for Balanced Designs, 537
	B. Basing the Test on a Nonzero		B. Denoting Significant
10.5	Value, 481	Tio N m	Differences, 539
10.5	Confidence Intervals for Two	elgnië e prof	C. Tests for Unbalanced Designs, 540
	Populations, 483	11.6	Two-Way ANOVA: The Randomized
	A. Confidence Intervals for Large,	lo dining	Block Design, 543
	Independent Samples, 483 Confidence Intervals with Two	11.7	A Potpourri, 551
	B. Confidence Intervals with Two	motisticon	A. Interaction, 551 D. Two factor ANOVA 552
	Small, Independent Samples, 485 C Paired Samples 486	11.0	B. Two-factor ANOVA, 552
	C. Paired Samples, 486	11.8	Solved Problems, 553

11.9	What You Should Have Learned from
	This Chapter, 561

- 11.10 Computer Applications, 561
 - A. Minitab, 561
 - B. SAS, 562
 - C. SPSS-PC, 563

List of Symbols and Terms, 564 List of Formulas, 564 Chapter Exercises, 566

CHAPTER 12

SIMPLE REGRESSION AND CORRELATION ANALYSIS, 578

- 12.1 Introduction, 580
- 12.2 The Mechanics of a Straight Line, 584
- 12.3 The Basic Objective of Regression Analysis, 585
- Ordinary Least Squares (The Line of Best Fit), 588
- An Example Using OLS, 591

 A. The Y-Values Are Assumed to Be
 Normally Distributed, 598
- 12.6 Assumptions of OLS, 601
- 12.7 The Standard Error of the Estimate:
 A Measure of Goodness of Fit, 604
- 12.8 Correlation Analysis, 609
 - A. The Coefficient of Determination, 609
 - B. The Coefficient of Correlation, 614
- 12.9 Limitations of Regression Analysis, 615
- 12.10 Interval Estimation in Regression Analysis, 616
 - A. The Conditional Mean for Y, 617
 - **B.** The Predictive Interval for a Single Value of Y, 620
 - C. Factors Influencing the Width of the Intervals, 622
- 12.11 Hypotheses Test about the Population Correlation Coefficient, 623

- 12.12 Testing Inferences about the Population Regression Coefficient, 626
 - A. Hypothesis Test for β_1 , 627
 - **B.** A Confidence Interval for β_1 , 630
- 12.13 Analysis of Variance Revisited, 631
- 12.14 Solved Problems, 632
- 12.15 What You Should Have Learned from This Chapter, 642
- 12.16 Computer Applications, 642 List of Symbols and Terms, 645 List of Formulas, 645 Chapter Exercises, 647

CHAPTER 13

MULTIPLE REGRESSION AND CORRELATION, 660

- 13.1 Introduction, 660
- 13.2 Formulation of the Model, 662
 - A. Ace's Objective, 662
 - B. The Normal Equations, 664
 - C. Ace's Solution, 665
- 13.3 Evaluating The Model, 666
 - A. The Standard Error of the Estimate, 667
 - B. Evaluating The Model As a Whole, 668
 - C. Testing Individual Partial Regression Coefficients, 670
- 13.4 Multiple Correlation, 678
 - A. The Adjusted Coefficient of Determination, 679
- 13.5 The Presence of Multicollinearity, 681
 - A. Problems of Multicollinearity, 681
 - B. Detection of Multicollinearity, 682
- C. Treating Multicollinearity, 684
 Comparing Regression
- Comparing Regression Coefficients, 685
- 13.7 An Expanded Model, 686
- 13.8 Stepwise Regression, 686

 A Rockword Elimination
 - A. Backward Elimination, 687
 - B. Forward Selection, 687
- 13.9 What You Should Have Learned from This Chapter, 688

13.10	Computer	Applications,	688
-------	----------	---------------	-----

- A. Minitab, 688
- B. SAS, 690
- C. SPSS-X, 690

Appendix, 691

List of Symbols and Terms, 693

List of Formulas, 694

Chapter Exercises, 694

CHAPTER 14

Dummy Variables and Residual Analysis: Extensions of Regression and Correlation, 708

- 14.1 Introduction, 710
- 14.2 Dummy Variables, 710
- 14.3 Residual Analysis, 716
 - A. Autocorrelation, 716
 - B. Heteroscedasticity, 721
- 14.4 The Curvilinear Case, 723
 - A. An Increasing Function, 724
 - B. A Decreasing Function, 726
 - C. Other Possibilities, 728
 - D. Using Polynomial Models, 728
- 14.5 Solved Problems, 730
- 14.6 What You Should Have Learned from This Chapter, 733
- 14.7 Computer Application, 733
 - A. Durbin-Watson Statistic, 733
 - B. Plots of Residuals, 734

List of Symbols and Terms, 734 List of Formulas, 734

Chapter Exercises, 734

CHAPTER 15

CHI-SQUARE AND OTHER NONPARAMETRIC TESTS, 742

- 15.1 Introduction, 744
- 15.2 Chi-Square Distribution $-\chi^2$, 745
 - A. Goodness-of-Fit Tests, 745
 - B. Contingency Tables—A Test for Independence, 756

- 15.3 The Sign Test, 761
 - A. The Use of Large Samples, 765
 - B. A One-Sample Sign Test, 766
- 15.4 Runs Test, 768
 - A. Large-Sample Tests, 770
- 15.5 The Mann-Whitney U Test, 772
 - A. A Two-Tailed Test, 775
 - B. A One-Tailed Test, 776
- 15.6 Spearman Rank Correlation, 779
- 15.7 The Kruskal-Wallis Test, 784
 - A. Detecting Which Differences Are Significant, 788
 - B. The Distinction betweenParametric and NonparametricTests, 790
- 15.8 Solved Problems, 791
- 15.9 What You Should Have Learned from This Chapter, 796
- 15.10 Computer Applications, 797
 - A. Minitab, 797

List of Symbols and Terms, 797

List of Formulas, 797

Chapter Exercises, 799

CHAPTER 16

TIME-SERIES ANALYSIS AND FORECASTING, 812

- 16.1 Introduction, 814
- 16.2 Time Series and Their Components, 814
 - A. Secular Trend, 816
 - B. Seasonal Variation, 816
 - C. Cyclical Variation, 817
 - D. Irregular Variation, 818
- 16.3 Time-Series Models, 818
- Smoothing Techniques, 819A. Moving Averages, 820
 - B. Exponential Smoothing, 823
- 16.5 Decomposition of a Time Series, 827
 - A. Secular Trend, 828
 - B. Seasonal Variation, 832
 - C. Cyclical Variation, 837
 - D. Irregular Variation, 839
- 16.6 Solved Problems, 840