# Foreword Preface

Introduction

References and Additional Reading

#### **Wave Optics** Part I

- **Electromagnetic Waves** 2
  - Macroscopic Maxwell's Equations 2.1
  - Wave Equations 2.2
  - **Boundary Conditions** 2.3
  - **Energy Conservation** 2.4

# References and Additional Reading

- **Geometrical Optics** 3
  - **Plane Waves** 3.1
  - **Eikonal Equation** 3.2
  - **Ray Equation** 3.3
  - **Transport of Intensity** 3.4 **References and Additional Reading**
- Waves at Interfaces
  - **Geometrical Theory of Refraction** 4.1
  - Wave Theory of Reflection and Transmission 4.2
  - **Total Internal Reflection** 4.3

**References and Additional Reading** 

page xvii

Coherence Theory: Basic Concepts

Random Fields and Coherence Functions

XIX

9

10

11

12

14

15

15

16

17

19

20

21

21

22

24



| 5 | Gree  | en's Functions and Integral Representations | 27 |
|---|-------|---------------------------------------------|----|
|   | 5.1   | Kirchhoff Integral Formula                  | 27 |
|   | 5.2   | The Green's Function in an Infinite Medium  | 29 |
|   | 5.3   | Far-Field Radiation Pattern                 | 31 |
|   |       | References and Additional Reading           | 32 |
| 6 | Plane | e-Wave Expansions                           | 33 |
|   | 6.1   | Plane-Wave Modes                            | 33 |
|   | 6.2   | Weyl Formula                                | 34 |
|   | 6.3   | Beam-Like Fields                            | 35 |
|   |       | References and Additional Reading           | 37 |

38

38

41

42

45

59

3.2

65

65

66

67

70

71

20 Geometrical Optics

Wayes at Interfaces

Fiame Waves

Eilconal Equation

References and Additional Reading

### viii

#### Diffraction 7

- Rayleigh-Sommerfeld Formulas 7.1
- Fresnel and Fraunhofer Diffraction 7.2
- 7.3 Circular Aperture

References and Additional Reading

| 8 | Cohe | erence Theory: Basic Concepts              | 46 |
|---|------|--------------------------------------------|----|
|   | 8.1  | Analytic Signal Representation             | 46 |
|   | 8.2  | Random Fields and Coherence Functions      | 48 |
|   | 8.3  | Interferometry                             | 50 |
|   |      | References and Additional Reading          | 53 |
| 9 | Cohe | erence Theory: Propagation of Correlations | 54 |
|   |      | Wolf Equations                             | 54 |
|   | 9.2  | van Cittert-Zernike Theorem                | 56 |
|   | 9.3  | Coherent Mode Representation               | 58 |

Coherent Mode Representation 9.3 References and Additional Reading Exercises

#### **Scattering of Waves** Part II

10 Scattering Theory

- **Integral Equations** 10.1
- Born Series and Multiple Scattering 10.2
- Scattering Amplitude and Cross Sections 10.3 Geometrical Theory of Refraction
- 10.4 T-matrix

References and Additional Reading



ix

| 11 | Optic  | al Theorem                                 | 72 |
|----|--------|--------------------------------------------|----|
|    | 11.1   | Extinguished Power                         | 72 |
|    | 11.2   | Generalized Optical Theorem                | 73 |
|    | 1      | References and Additional Reading          | 74 |
| 12 | Scatte | ering in Model Systems                     | 76 |
|    | 12.1   | Point Scatterer                            | 76 |
|    | 12.2   | Collection of Point Scatterers             | 79 |
|    | 12.3   | Scattering from Spheres of Arbitrary Size  | 79 |
|    |        | References and Additional Reading          | 84 |
|    |        |                                            |    |
| 13 | Renor  | malized Perturbation Theory                | 85 |
|    | 13.1   | Rytov Series                               | 85 |
|    | 13.2   | Geometrical Optics and the Radon Transform | 86 |
|    |        | References and Additional Reading          | 88 |
|    |        | Two-Frequency Bethe-Salpeter Equation      |    |
| 14 | Wave   | Reciprocity                                | 89 |
|    | 14.1   | Fundamental Relation                       | 89 |
|    | 14.2   | Local Form of the Reciprocity Theorem      | 90 |
|    | 14.3   | Reciprocity of the Green's Function        | 90 |
|    | 14.4   | Reciprocity of the Scattering Matrix       | 91 |
|    |        | References and Additional Reading          | 94 |
|    |        | Exercises                                  | 94 |

# Part III Wave Transport

Reading Transport Roundary Conditions ond Internet Stiller Stiller

| 15 Multip | ple Scattering: Average Field                            | 99  |
|-----------|----------------------------------------------------------|-----|
| 15.1      | Gaussian Model                                           | 99  |
| 15.2      | Average Field                                            | 100 |
| 15.3      | Weak Scattering and Effective Medium                     | 103 |
| 15.4      | General Models of Disorder                               | 105 |
|           | References and Additional Reading                        | 106 |
|           | ole Scattering: Field Correlations<br>adiative Transport | 108 |
|           |                                                          |     |
| 16.1      | Field Correlations                                       |     |
| 16.2      | Wigner Transform                                         | 110 |
| 16.3      | Radiative Transport                                      | 113 |
| 16.4      | General Models of Disorder                               | 115 |
| 16.5      | Ward Identity                                            | 116 |
|           | References and Additional Reading                        | 118 |

| 17 | Radia  | tive Transport: Multiscale Theory                 | 119 |
|----|--------|---------------------------------------------------|-----|
|    | 17.1   | High-Frequency Asymptotics                        | 119 |
|    | 17.2   | Multiscale Expansion                              | 121 |
|    |        | References and Additional Reading                 | 124 |
| 18 | Discre | ete Scatterers and Spatial Correlations           | 125 |
|    | 18.1   | T-matrix of a Discrete Set of Scatterers          | 125 |
|    | 18.2   | Irreducible Vertex                                | 127 |
|    | 18.3   | Independent Scattering                            | 129 |
|    | 18.4   | Structure Factor                                  | 130 |
|    | 18.5   | Correlations                                      | 131 |
|    | 18.6   | Transport Mean Free Path                          | 132 |
|    |        | References and Additional Reading                 | 134 |
| 19 | Time-  | Dependent Radiative Transport and Energy Velocity | 135 |
|    | 19.1   | Two-Frequency Bethe–Salpeter Equation             | 135 |
|    | 19.2   | Time-Dependent Radiative Transport Equation       | 138 |
|    | 19.3   | Nonresonant Scattering                            | 140 |
|    | 19.4   | Resonant Scattering                               | 140 |
|    | 19.5   | Energy Velocity                                   | 141 |
|    |        | References and Additional Reading                 | 143 |
|    |        | Exercises                                         | 143 |
|    |        |                                                   |     |

# Part IV Radiative Transport and Diffusion

X

20 Radiative Transport: Boundary Conditions and Integral

| Repr     | esentations                                          | 147 |
|----------|------------------------------------------------------|-----|
| 20.1     | Time-Independent Radiative Transport                 | 147 |
| 20.2     | Boundary Conditions and Uniqueness                   | 148 |
| 20.3     | Green's Functions and Integral Representations       | 150 |
| 20.4     | Reciprocity                                          | 151 |
|          | References and Additional Reading                    | 152 |
| 21 Elem  | entary Solutions of the Radiative Transport Equation | 153 |
| 21.1     | Ballistic Propagation                                | 153 |
| 21.2     | Collision Expansion                                  | 154 |
| 21.3     | Isotropic Scattering                                 | 156 |
|          | References and Additional Reading                    | 158 |
|          | General Models of Disorder                           |     |
| 22 Probl | ems with Planar and Azimuthal Symmetry               | 160 |
| 22.1     | Singular Eigenfunctions                              | 160 |
|          |                                                      |     |

Green's Function Speckle and interference Pi 22.2 **Diffusion Approximation** 22.3 References and Additional Reading

23 Scattering Theory for the Radiative Transport Equation

- **Integral Equations** 23.1
- **Point Absorbers** 23.2

**References and Additional Reading** 

24 Diffusion Approximation

xi

164

165

166

a Properties of Rayleigh Statistics

29.2.2 Diagrammatic Representation

- - **Angular Moments** 24.1
  - Asymptotic Analysis 24.2
  - Bethe-Salpeter to Diffusion 24.3 **References and Additional Reading**

# 25 Diffuse Light

- **Boundary Conditions** 25.1
- Homogeneous Media 25.2
- **Plane-Wave Expansions** 25.3
- Half-Space Geometry 25.4
- Slab Geometry 25.5
- **Time-Dependent Diffusion** 25.6 **References and Additional Reading**

**Diffuse** Optics 26

190

| 0  | Dillus | e Optics                          | 190    |
|----|--------|-----------------------------------|--------|
|    | 26.1   | Diffuse Waves                     | 190    |
|    | 26.2   | Wave Properties                   | 191    |
|    | 26.3   | Interference                      | 191    |
|    | 26.4   | Refraction                        | 192    |
|    | 26.5   | Diffraction                       | 195    |
|    |        | References and Additional Reading | 197    |
|    |        |                                   | Fields |
| 27 | Scatte | ring of Diffuse Waves             | 198    |
|    | 27.1   | Integral Equations                | 198    |
|    | 27.2   | Small Inhomogeneities             | 200    |
|    | 27.3   | Extinction Theorem                | 202    |
|    | 27.4   | Surface Integral Equations        | 204    |
|    |        | References and Additional Reading | 206    |

Exercises

#### **Speckle and Interference Phenomena** Part V

# **28 Intensity Statistics**

31.1

- Fully Developed Speckle 28.1
- Amplitude Distribution Function 28.2
- **Intensity Distribution Function** 28.3
- Speckle Contrast 28.4
- Intensity Statistics of Unpolarized Electromagnetic 28.5 Waves

References and Additional Reading

29 Some Properties of Rayleigh Statistics

218

attering Theory for the Rad

218 High-Order Moments of the Intensity 29.1 219 Field and Intensity Correlations 29.2 29.2.1 Factorization of the Intensity Correlation 219 Function 220 29.2.2 Diagrammatic Representation **Diagrammatic View of Rayleigh Statistics** 29.3 References and Additional Reading Homogeneous Media **30 Bulk Speckle Correlations** Half-Space Geometry Model of Disorder 30.1 Field Correlation Function in the Ladder Approximation 30.2 **Intensity Correlation Function** 30.3 **References and Additional Reading** 227 31 Two-Frequency Speckle Correlations

**Two-Frequency Bethe–Salpeter Equation** 

- 221 222 223 223 223 225 225
- 227

|    | 31.2   | Two-Frequency Ladder Propagator                       | 228 |
|----|--------|-------------------------------------------------------|-----|
|    | 31.3   | Field Correlation Function in an Infinite Medium      | 229 |
|    |        | References and Additional Reading                     | 230 |
|    |        | Diffraction                                           |     |
| 32 | Ampli  | tude and Intensity Propagators for Multiply-Scattered |     |
|    | Fields |                                                       | 231 |
|    | 32.1   | Amplitude Propagator                                  | 231 |
|    |        | 32.1.1 The Scattering Sequences Picture               | 232 |
|    |        | 32.1.2 Rigorous Definition of a Scattering Sequence   | 232 |
|    | 32.2   | Correlation Function of the Amplitude Propagator      | 234 |
|    | 32.3   | Correlation Function in an Infinite Medium            | 234 |
|    | 32.4   | Intensity Propagator                                  | 236 |
|    |        | References and Additional Reading                     | 237 |
|    |        |                                                       |     |



| 33 | Far-Fi | eld Angular Speckle Correlations                    | 238 |
|----|--------|-----------------------------------------------------|-----|
|    | 33.1   | Angular Correlation Function                        | 238 |
|    | 33.2   | Field Angular Correlation Function                  | 239 |
|    | 33.3   | Intensity Propagator in the Diffusion Approximation | 241 |
|    | 33.4   | Intensity Correlation Function and Memory Effect    | 241 |
|    | 33.5   | Size of a Speckle Spot                              | 242 |
|    | 33.6   | Number of Transmission Modes                        | 243 |
|    |        | References and Additional Reading                   | 244 |
| 34 | Coher  | ent Backscattering                                  | 245 |
|    | 34.1   | Reflected Far-Field                                 | 245 |
|    | 34.2   | Reflected Intensity                                 | 246 |
|    | 34.3   | Reciprocity of the Amplitude Propagator             | 247 |
|    | 34.4   | Coherent Backscattering Enhancement                 | 248 |
|    | 34.5   | Coherent Backscattering Cone and Angular Width      | 249 |
|    |        | References and Additional Reading                   | 251 |
| 35 | Dynar  | nic Light Scattering                                | 252 |
|    | 35.1   | Single Scattering Regime                            | 252 |
|    | 35.2   | Measured Signal and Siegert Relation                | 254 |
|    | 35.3   | Multiple-Scattering Regime and Diffusing-Wave       |     |
|    |        | Spectroscopy                                        | 255 |
|    |        | References and Additional Reading                   | 258 |
|    |        | Exercises                                           | 259 |

xiii

Part VI Electromagnetic Waves and Near-Field Scattering

|           | CONCLUMENT INVESTIGATION CONC. TO SUPPORT AND SALES  |     |
|-----------|------------------------------------------------------|-----|
| 36 Vector | r Waves                                              | 265 |
| 36.1      | Vector Wave Equation                                 | 265 |
| 36.2      | Energy Conservation                                  | 266 |
| 36.3      | Reflection and Transmission of Electromagnetic Waves | 267 |
|           | References and Additional Reading                    | 269 |
|           | Discussion                                           |     |
| 37 Electr | omagnetic Green's Functions                          | 270 |
| 37.1      | Tensor Green's Function                              | 270 |
| 37.2      | Far-Field and Near-Field Asymptotics                 | 272 |
| 37.3      | Far-Field Radiated Power                             | 273 |
| 37.4      | Plane-Wave Expansion                                 | 273 |
| 37.5      | Transverse and Longitudinal Green's Function         | 275 |
|           | Released and Additional Reading -                    |     |

|    | 37.6    | Half-Space Green's Function                       | 276  |
|----|---------|---------------------------------------------------|------|
|    |         | References and Additional Reading                 | 278  |
|    |         | 5.2 Field Angular Correlation Function            | 613  |
| 38 | Electr  | ic Dipole Radiation                               | 279  |
|    | 38.1    | Far-Field, Near-Field and Quasi-static Limit      | 279  |
|    | 38.2    | Radiated Power                                    | 280  |
|    | 38.3    | Local Density of States                           | 281  |
|    | 38.4    | Local Density of States and Dipole Radiation      | 283  |
|    | 38.5    | A Simple Classical to Quantum Correspondence      | 284  |
|    | 38.6    | Purcell Factor                                    | 284  |
|    | 38.7    | Cross Density of States                           | 286  |
|    |         | References and Additional Reading                 | 288  |
|    |         |                                                   |      |
| 39 | Scatte  | ring of Electromagnetic Waves                     | 290  |
|    | 39.1    | Integral Equations                                | 290  |
|    | 39.2    | Scattering Amplitude and Cross Sections           | 291  |
|    | 39.3    | Born Approximation and Rayleigh–Gans Scattering   | 292  |
|    |         | References and Additional Reading                 | 294  |
| 40 | Electro | omagnetic Reciprocity and the Optical Theorem     | 296  |
|    |         | Lorentz Reciprocity Relation                      | 296  |
|    | 40.2    | Consequences of the Reciprocity Theorem           | 297  |
|    | 40.3    | Conservation of Energy in a Scattering Problem    | 298  |
|    | 40.4    | Optical Theorem for Electromagnetic Waves         | 299  |
|    | 40.5    | Integral Theorems                                 | 300  |
|    |         | References and Additional Reading                 | 302  |
|    |         | Vi Electromagnette Waves and Nem-Field Scattering | Part |

41 Electromagnetic Scattering by Subwavelength Particles

| 41.1     | Polarizability                                         | 303 |
|----------|--------------------------------------------------------|-----|
| 41.2     | Energy Conservation                                    | 305 |
| 41.3     | Rayleigh and Resonant Scattering                       | 306 |
| 41.4     | Near-Field Scattering                                  | 307 |
| 41.5     | Near-Field Local Density of States                     | 308 |
| 41.6     | Discussion                                             | 309 |
|          | References and Additional Reading                      | 311 |
| 42 Multi | ple Scattering of Electromagnetic Waves: Average Field | 313 |
| 42.1     | Model of Disorder                                      | 313 |
| 42.2     | Average Green's Function                               | 314 |
| 42.3     | Self-Energy and the Effective Medium                   | 314 |
|          | References and Additional Reading                      | 317 |
|          |                                                        |     |



43 Multiple Scattering of Electromagnetic Waves: Radiative 319 Transport 319 **Bethe–Salpeter Equation** 43.1 321 **Radiative Transport** 43.2 **Diffusion Approximation and Depolarization** 325 43.3 328 **References and Additional Reading** 44 Bulk Electromagnetic Speckle Correlations 330 330 **Intensity Correlation Function** 44.1 **Field Correlation Function** 332 44.2

|    | 44.3                                            | Degree of Spatial Coherence                                   | 333      |
|----|-------------------------------------------------|---------------------------------------------------------------|----------|
|    |                                                 | References and Additional Reading                             | 334      |
| 45 | Near-Field Speckle Correlations                 |                                                               | 335      |
|    | 45.1                                            | Field Correlation Function in a Semi-Infinite Geometry        | 335      |
|    | 45.2                                            | Far-Field Regime                                              | 338      |
|    | 45.3                                            | Near-Field Regime                                             | 339      |
|    | 45.4                                            | Extreme Near-Field                                            | 340      |
|    |                                                 | References and Additional Reading                             | 341      |
| 46 | Speckle Correlations Produced by a Point Source |                                                               | 342      |
|    | 46.1                                            | Angular Intensity Correlation Function                        | 342      |
|    | 46.2                                            | Speckle Correlations and Fluctuations of the Local Density of | s have ? |
|    |                                                 | States                                                        | 343      |
|    | 46.3                                            | Single Scattering                                             | 345      |
|    |                                                 | References and Additional Reading                             | 347      |

Exercises

348

XV

## Index