Contents

Preface

Notation and Convention

1	Har	miltonian systems and applications	1
	1.1	Motion of massive particle	1
	1.2	Many-body problem	6
	1.3	Kepler's laws of planetary motion	8
	1.4	Helmholtz–Kirchhoff vortex model	14
	1.5	Partition function and thermodynamics	19
	1.6	Dynamic modeling of DNA denaturation	22
2	Sch	rödinger equation	
	and	quantum mechanics	29
	2.1	Path to quantum mechanics	29
	2.2	Schrödinger equation	32
	2.3	Quantum many-body problem	41
	2.4	Hartree–Fock method	43
	2.5	Thomas–Fermi approach	46
	2.6	Density functional theory	49
3	Max	xwell equations, Dirac monopole, and gauge	
	field	ls	59
	3.1	Maxwell equations and electromagnetic	
		duality	59

xi

xix

64

66

69

71

73

making inechangeld

3.2 Dirac monopole and strings

3.3 Charged particle in electromagnetic field

- 3.4 Removal of Dirac strings and charge quantization
- 3.5 Schwinger dyons and extended charge quantization formula
- 3.6 Aharonov–Bohm effect

4	Spee	cial relativity	79
	4.1	Inertial frames, Minkowski spacetime,	
		and Lorentz boosts	79
	4.2	Line element, proper time, and consequences	82
	4.3	Relativistic mechanics	86
	4.4	Doppler effects	92
5	Abe	lian gauge field equations	96
	5.1	Spacetime, covariance, and invariance	96
	5.2	Relativistic field equations	102
	5.3	Coupled nonlinear hyperbolic and elliptic	
		equations	109
	5.4	Symmetry breaking	111
	5.5	Higgs mechanism	114

6	Dir	ac equations	119
	6.1	Pauli matrices, spinor fields, and Dirac	
		equation	119
	6.2	Action, probability, and current densities	122
	6.3	Special solutions	122
	6.4	Dirac equation coupled with gauge field	125
	6.5	Dirac equation in Weyl representation	129
	6.6	Nonlinear Dirac equations	130
7	Gin	zburg–Landau equations for superconductivity	133
	7.1	Perfect conductors, superconductors,	
		and London equations	133
	7.2	Superconductors and Ginzburg–Landau	138
	73	Classification of superconductivity	100
	1.0	by surface energy	143
	7.4	Mixed state and its magnetic characterizations	149
	7.5	Some generalized Ginzburg–Landau equations	152
8	Ma	gnetic vortices in Abelian Higgs theory	157
	8.1	Energy partition, flux quantization,	
		and topological properties	157
	8.2	Vortex-lines, solitons, and particles	162
	8.3	Radially symmetric solutions	168
	8.4	From monopole confinement to quark	
		confinement	169

9	Nor	n-Abelian gauge field equations	176
v	9.1	Yang–Mills theory	176
	9.2	Georgi-Glashow model	181
	9.3	't Hooft–Polyakov monopole and Julia–Zee	
		dyon	186
	9.4	Monopoles and dyons in BPS limit	190
	9.5	Weinberg–Salam electroweak equations	199
10	Eins	stein equations and related topics	207
	10.1	Einstein field equations	207
	10.2	Cosmological consequences	215
	10.3	Schwarzschild black-hole solution	228
	10.4	Reissner–Nordström solution	238
	10.5	Kerr solution	245
	10.6	Gravitational mass and Penrose bounds	247
	10.7	Gravitational waves	253
	10.8	Scalar-wave matters as quintessence	255
11	Cha	rged vortices and Chern-Simons equations	267
11	11.1	Julia-Zee theorem	201
	11.2	Chern-Simons term	201
	11.3	Dually charged vortices	270
	11.4	Rubakov–Tavkhelidze problem	274
			211
12	Sky	rme model and related topics	281
	12.1	Derrick theorem and Pohozaev identity	281
	12.2	Skyrme model	286
	12.3	Knots in Faddeev model	292
	12.4	Other fractional-exponent growth laws	
		and knot energies	297

12.5 Q-balls

13 Strings and branes

- 13.1 Motivation and relativistic motion of free particle as initial setup
- 13.2 Nambu-Goto strings
- 13.3 *p*-branes
- 13.4 Polyakov strings and branes
- 13.5 Equations of motion with interactions

308

308

310

314

317

321

14	Borr	n–Infeld theory of electromagnetism	323
	14.1	Resolution of energy divergence problem	
		of point charges	323
	14.2	Some illustrative calculations	329
	14.3	Dyonic point charge	334
	14.4	Formalism based on invariance	336
	14.5	Generalized Bernstein problem	342
	14.6	Born–Infeld term and virial identities	346
	14.7	Integer-squared law for global Born–Infeld vortices	348
	14.8	Electrically charged black hole solutions	353
	14.9	Dyonic black hole solutions	360
	14.10	Generalized Born–Infeld theories	
		and applications	369
	14.11	Electromagnetic asymmetry by virtue	
		of point charges	371
	14.12	Charged black holes	380
	14.13	Relegation of curvature singularities of charged black	
		holes	387
	14.14	Cosmology driven by scalar-wave matters as k-essence	395
	14.15	Finite-energy dyonic point charge	405
	14.16	Dyonically charged black holes	
		with relegated singularities	415
15	Cano	onical quantization of fields	429
	15.1	Quantum harmonic oscillator	429
	15.2	Canonical quantization	434
	15.3	Field equation formalism	439
	15.4	Quantization of Klein–Gordon equation	442
	15.5	Quantization of Schrödinger equation	448
	15.6	Quantization of electromagnetic fields	455
	15.7	Thermodynamics of harmonic oscillator	463
Ap	pendi	ces	470
	A.1	Index of vector field and topological degree of map	470
	A.2	Linking number and Hopf invariant	484

A.3 Noether theorem

- A.4 Spectra of angular momentum operators
- A.5 Spins and spin-statistics theorem
- A.6 Deflection of light in gravitational field

Bibliography

Index

524

556