Contents

Preface

CHAPTER 1

Introduction: Electromagnetic Theory without Myths

ix

	1.1	The Fundamental Electromagnetic Variables Are		
		the Potentials, Not the Field Strengths		4
	1.2	Electromagnetic Energy, Momentum, and Stress Are	Э	
		an Integral Part of the Theory		5
	1.3	Electromagnetic Fields Should Not Be Viewed		
		as Being Produced by Charged Matter		8
	1.4	At a Fundamental Level, Classical Charged Matter		
		Must Be Viewed as Continuous Rather		
		Than Point-Like		10
CHAPTER 2	Elec	trostatics		13
	2.1	Uniqueness of Solutions in Electrostatics		13
	2.2	Point Charges and Green's Functions		16
	2.3	Interaction Energy and Force		18
	2.4	Multipole Expansion of the Green's Function		22
	2.5	Conducting Cavities; Dirichlet and Neumann		
		Green's Functions		27
		Problems		34
CHAPTER 3	Diel	ectrics		38
	3.1	Macroscopic Description of Dielectrics		38
	3.2	Force and Interaction Energy		43
		Problems		48
CHAPTER 4	Mag	gnetostatics		50
	4.1	The Equations of Magnetostatics		50
	4.2	Multipole Expansion		53
	4.3	Interaction Energy and Force		58
	4.4	Magnetic Materials		65
		Problems		66
CHAPTER 5	Elec	trodynamics		70
	5.1	The Equations of Electrodynamics		70

vi Contents

.

	5.2	Retard	ded Green's Function	74		
	5.3	Multip	ole Expansion	.80		
		5.3.1	Cartesian Multipole Expansion of the			
			Radiation Field for a Nonrelativistic Source	80		
		5.3.2	General Multipole Expansion for			
			a Relativistic Source	84		
	5.4	The In	itial Value Formulation for Maxwell's Equation	ons 91		
	5.5	Plane	Waves	97		
	5.6	Condu	cting Cavities and Waveguides	100		
		5.6.1	Conducting Cavities	101		
		5.6.2	Waveguides	102		
		Proble	ms	107		
CHAPTER 6	Electrodynamics in Media					
	6.1					
		an Ins	tantaneous Response	114		
	62	Linear	Homogeneous Isotropic Medium			
	0.2	with a	Delaved Response	117		
	63	Thele	prentz Model for $\epsilon(\omega)$	120		
	0.0	631	Nonconducting Medium	120		
		632	Plasma or Conducting Modium	122		
	61	Magn	atobydrodynamice	125		
	0.4	Droblo	me	120		
		FIODIE	1115	131		
CHAPTER 7	Geo	metric	Ontice Interference and Diffraction	135		
CHAITEN /	71	Goom	otrio Option	100		
	7.1	Intorfo	rance and Cohoranae	130		
	7.2	Diffrac	ation	140		
	1.5		Coattoring by a Dialastria Dall	147		
		7.0.1	Dranagetion of Mayon through an Anarture	140		
		7.J.Z	Fropagation of waves through an Aperture	150		
		FIODIe	ins	153		
CUADTEDO	Cno	aial Da	lativity	150		
CHAFIENO	Spe		Halivily	158		
	8.1	The Fr	amework of Special Relativity	159		
	8.2	The Fo	prmulation of Electromagnetic Theory in the	470		
	~ ~	Frame	work of Special Relativity	170		
	8.3	Charge	ed Particle Motion and Radiation	175		
		8.3.1	Charged Particle Motion	175		
		8.3.2	Radiation from a Point Charge			
			In Arbitrary Motion	178		
		Proble	ms	183		
OLLA DTED O						
CHAPIER 9	Elec	troma	gnetism as a Gauge Theory	188		
	9.1	Lagrar	ngian for the Electromagnetic Field			
		and Its	sInteractions	188		
	9.2	Gauge	Invariance and the Reinterpretation of the			
		Electro	omagnetic Field as a Connection	196		
	9.3	Dirac I	Vlagnetic Monopoles	199		

11

CHAPTER 10	Point Charges and Self-Force	204
	10.1 The Point Particle Limit	204
	10.2 Lorentz Force	208
	10.3 Corrections to Lorentz Force Motion	213
	10.3.1 Self-force Corrections	218
	10.3.2 Spin and Dipole Effects	220
	10.4 Self-Consistent Motion	221

Index

227

and only a course how deep to gauge eller of the standards a transfer of the standards and the standards difference on the sign difference built depend of the first state of the first state of the first state of the