Contents

List of contributors

Self-assembled monolayer-based nanoscaled 1. surfaces

Faezeh Ghorbanizamani, Emine Guler Celik, Hichem Moulahoum and Suna Timur

- Self-assembled monolayers 1.1
- Self-assembled monolayers based on thiolates 1.2
- Self-assembled monolayers based on polymers 1.3
- Self-assembled monolayers based on dendrons 1.4
- Self-assembled monolayers based on lipids 1.5
- Self-assembled monolayers based on peptides 1.6

2

7

9

11

43

45

49

55

V

1.6	Self-assembled monolayers based on peptides	14
1.7	Conclusion	17
Refe	erences	17
Mie	cro/nanomotors: recent applications	27
Sine	em Evli, Murat Uygun, Baha Öndeş and Deniz Aktaş Uygun	
2.1	History of micro/nanomotors	27
2.2	Classification of micro/nanomotors, their	
	functionalization and modification	28
2.3	Actuation and motion control types	30
	2.3.1 Chemically powered micro/nanomotors	31
	2.3.2 Light-driven micro/nanomotors	33
	2.3.3 Magnetic field-controlled micro/nanomotors	33
	2.3.4 Acoustic field-controlled micro/nanomotors	34
2.4	Applications of micro/nanomotors	35
Refe	erences	39
Na	noscale physics of electrochemistry	43
~		

Saniye Soylemez, Sevinc Kurbanoglu and Filiz Kuralay

Introduction 3.1

- Nanotechnology for electrochemistry 3.2
- **Biophysical sensors** 3.3
- **Biomolecule-based interactions and their** 3.4 electrochemical evaluation

56
59
60
62
63
63
64

4.	Nanomotor technologies developed for cell-based
	nanoscale transport phenomena and mechanism
	Sezin Eren Demirbuken, Bora Garipcan and Filiz Kuralay

4.1	Introduction		73
4.2	Drug delivery and nanomotors		75
4.3	Intracellular transport and nanomotor		79
4.4	Conclusion		86
Ack	nowledgments		87

87
93
93
er
96
96
97
97
98
99
99
99

5.4 Conclusion References

103 103

73

- Molecular imprinting on the nanoscale rapid 6. detection of cells
 - 107

Neslihan Idil, Sevgi Aslıyüce, Işık Perçin and Bo Mattiasson

- Introduction 6.1
- Molecular imprinting 6.2

107 110

		6.2.1 Fundamentals of molecular imprinting	110
		6.2.2 Molecular imprinting strategies	111
	6.3	Detection	114
	0.0	6.3.1 Nano-molecularly imprinted polymers	114
		6.3.2 Sensing	114
	6.4	Applications of cell detection	115
		6.4.1 Mammalian cell detection	115
		6.4.2 Microbial cell detection	117
	6.5	Conclusion and future perspectives	125
	Refe	erences	126
7.	Nai	nomachines and their biomedical applications	131
	Hur	na Shaikh, Mehrunnisa Koondhar and Najma Memon	
	7.1	Nanoparticles and their biomedical applications	132
	7.2	Nanofibers and their biomedical applications	135
	7.3	Carbon-based nanomaterials and their biomedical	
		applications	137
	7.4	Conclusion	143

References	144

8.	Monolithic column based capillary- and nano-liquid		
	chromatography applied to protein separation	151	
	Büşra Beltekin, Cemil Aydoğan, Sarah Alharthi and Ziad El Rassi		

8.1	Introc	luction	151
8.2	Capill	ary- and nano-LC	152
8.3	Mono	lithic columns	154
8.4	Separ	ation of proteins using nanomonoliths in various	
	chron	natography modes by nano-LC	154
	8.4.1	Reversed phase (RP) chromatography	159
	8.4.2	Affinity chromatography	160
	8.4.3	Ion-exchange chromatography	160
8.5	Concl	usion	162
Refe	erences		163

Interferometric reflectance imaging sensor for 9. diagnosis and therapy

Monireh Bakhshpour-Yucel, Sinem Diken-Gür, Iris Çelebi, Mete Aslan, Neşe Lortlar Ünlü and M. Selim Ünlü

- Introduction 9.1
- 9.2 Interferometric reflectance imaging sensor
 - Surface chemistry of interferometric reflectance 9.2.1 imaging sensor chips
 - Data collection, image analysis, and data processing 9.2.2

167

168

169

170

	9.3	Interferometric reflectance imaging sensor—utilized low magnification—label-free measurement of biomass	
		 accumulations and detection principles 9.3.1 Applications of high-throughput, label-free measurement of biomass accumulations with 	172
	9.4	interferometric reflectance imaging sensors Single-particle interferometric reflecting imaging	174
		sensor-digital detection of single nanoparticles and	
		detection principles	175
	9.5	Conclusion	180
	Refe	erences	180
0.	Ato	mic force microscopy and scanning tunneling	
	mic	roscopy of live cells	183
	Erku Mer	ıt Yılmaz, Erdoğan Özgür, Semra Akgönüllü, ve Asena Özbek, Nilay Bereli, Handan Yavuz and Adil Denizli	
	10.1	Introduction/basic concepts of scanning probe microscopy	183
	10.2	Principles of SPM	185
		10.2.1 Scanning tunneling microscopy	185
		10.2.2 Atomic force microscopy	186
		10.2.3 Different SPM modes and uses in the cell imaging	186
	10.3	Basic parts of an AFM specialized for cell imaging 10.3.1 Chemical functionalization and coupling with	188
		biomolecules of AFM probes	190
		10.3.2 Substrate materials and sample fixation	190
	10.4	Sensing applications	193
		10.4.1 Cell detection and hybrid measurements for	102
	10 5	Euturo asposts	193
	Refe	rences	198
	NCR	actices	150
1.	Nai	nomolecular imprinted templates for virus	
	det	ection	203
	Yeşe	eren Saylan, Zeynep Gerdan, Merve Çalışır and Adil Denizli	
	11.1	Introduction	203
	11.2	Molecular imprinting method	204
		11.2.1 History	204
		11.2.2 Molecularly imprinted polymers	205
		11.2.3 Types of molecular imprinting methods	206
		11.2.4 Components of molecularly imprinted polymers	207
	11.3	Nanomaterial-based sensors	209
		11.3.1 Electrochemical sensors	210
		11.3.2 Piezoelectric sensors	210
		11.3.3 Optical sensors	211

	11.4	Applications of virus-imprinted sensors	211
		11.4.1 Ebola virus detection	212
		11.4.2 Dengue and Zika virus detection	212
		11.4.3 Hepatitis virus detection	214
		11.4.4 Human immunodeficiency virus detection	216
		11.4.5 Influenza virus detection	217
		11.4.6 Coronavirus detection	217
	11.5	Conclusion and future perspectives	219
	Refe	rences	221
12.	Nan	odevices and nanomachines at the nanoscale	
	biop	ohysics	233
	Semi	a Akgönüllü, Duygu Çimen, Ilgım Göktürk,	
	Gaye	Ezgi Yılmaz, Fatma Yılmaz and Adil Denizli	
	12.1	Introduction	233
	12.2	The approaches for creating nanodevices	234
		12.2.1 Top-down approach	234
		12.2.2 Bottom-up approach	239
	12.3	Plasmonics	240
		12.3.1 Nanooptics and subdiffraction-limited imaging	241
		12.3.2 Optical molecular switches	241
	12.4	Nanodevices used in nanomedicine	242
		12.4.1 Drug release	242
		12.4.2 Cell	244
		12.4.3 Diagnostic	245
		12.4.4 Cancer	246
	12.5	Imaging and spectroscopic techniques	248
		12.5.1 Spectroscopic techniques	251
	12.6	Nanomachines	252
	12.7	Conclusions	255
	Refer	rences	255
ndex	<		263