Contents

List of Contributors Preface

CONTRACT OF STREET

General Introduction to Transmission Electron Microscopy (TEM)

3.2. The Grewe Revolution: Hpw ST

Peter Goodhew

- 1.1 What TEM Offers
- 1.2 Electron Scattering
 - 1.2.1 Elastic Scattering
 - 1.2.2 Inelastic Scattering
- Signals which could be Collected 1.3
- Image Computing 1.4
 - 1.4.1 Image Processing
 - 1.4.2 Image Simulation
- 1.5 Requirements of a Specimen
- STEM Versus CTEM 1.6
- Two Dimensional and Three Dimensional Information 1.7

X1

X111

Intro	oduction to Electron Optics	21
Gor	don Tatlock	
2.1	Revision of Microscopy with Visible Light and Electrons	21
2.2	Fresnel and Fraunhofer Diffraction	22
2.3	Image Resolution	23
2.4	Electron Lenses	25
	2.4.1 Electron Trajectories	26
	2.4.2 Aberrations	27
2.5	Electron Sources	30
2.6	Probe Forming Optics and Apertures	32
2.7	SEM, TEM and STEM	33

39

39

41

42

45

3 Development of STEM

L.M. Brown

3.1 Introduction: Structural and Analytical Information in Electron Microscopy

3.2 The Crewe Revolution: How STEM Solves the Information Problem

- 3.3 Electron Optical Simplicity of STEM
- 3.4 The Signal Freedom of STEM
 - 3.4.1 Bright-Field Detector (Phase Contrast, Diffraction Contrast)
 - 3.4.2 ADF, HAADF
 - 3.4.3 Nanodiffraction

45 45 46

		J. I.J I Humbulin dellon	
		3.4.4 EELS	47
		3.4.5 EDX	47
		3.4.6 Other Techniques	48
	3.5	Beam Damage and Beam Writing	48
	3.6	Correction of Spherical Aberration	49
	3.7	What does the Future Hold?	51
4	Lens	Aberrations: Diagnosis and Correction	55
	And	rew Bleloch and Quentin Ramasse	
	4.1	Introduction	55
	4.2	Geometric Lens Aberrations	
		and Their Classification	59
	4.3	Spherical Aberration-Correctors	66
		4.3.1 Quadrupole-Octupole Corrector	69
		4.3.2 Hexapole Corrector	70
		4.3.3 Parasitic Aberrations	72
	4.4	Getting Around Chromatic Aberrations	74
	4.5	Diagnosing Lens Aberrations	75
		4.5.1 Image-based Methods	77
		4.5.2 Ronchigram-based Methods	80
		4.5.3 Precision Needed	85
	4.6	Fifth Order Aberration-Correction	85
	4.7	Conclusions	86
5	The	ory and Simulations of STEM Imaging	89
	Peter D. Nellist		
	5.1	Introduction	89
	5.2	Z-Contrast Imaging of Single Atoms	90

0

4	5.3	STEM	Imaging Of Crystalline Materials	92
		5.3.1	Bright-field Imaging and Phase Contrast	93
		5.3.2	Annular Dark-field Imaging	96
4	5.4	Incohe	erent Imaging with Dynamical Scattering	101
4	5.5	Therm	nal Diffuse Scattering	103
		5.5.1	Approximations for Phonon Scattering	104
4	5.6	Metho	ods of Simulation for ADF Imaging	106
		5.6.1	Absorptive Potentials	106
		5.6.2	Frozen Phonon Approach	107
4	5.7	Concl	usions	108
1	Deta	ils of S	TEM	111
1	Alan	crave	n	1.351
(6.1	Signal	to Noise Ratio and Some of its Implications	112
(6.2	The R	elationships Between Probe Size,	
		Probe	Current and Probe Angle	113
		6.2.1	The Geometric Model Revisited	113
		6.2.2	The Minimum Probe Size, the Optimum	
			Angle and the Probe Current	115
		6.2.3	The Probe Current	115
		6.2.4	A Simple Approximation to Wave Optical	
			Probe Size	117
		6.2.5	The Effect of Chromatic Aberration	117
		6.2.6	Choosing α_{opt} in Practice	118
		6.2.7	The Effect of Making a Small Error	
			in the Choice of α_{opt}	119
		6.2.8	The Effect of α On the Diffraction Pattern	120
		6.2.9	Probe Spreading and Depth of Field	122
(6.3	The C	ondenser System	124
(6.4	The So	canning System	126
		6.4.1	Principles of the Scanning System	126
		6.4.2	Implementation of the Scanning System	128
		6.4.3	Deviations of the Scanning System From Ideality	128
		6.4.4	The Relationship Between Pixel Size	
			and Probe Size	130
		6.4.5	Drift, Drift Correction and Smart Acquisition	131
(6.5	The S ₁	pecimen Stage	133
(6.6	Post-S	pecimen Optics	135
(6.7	Beam Blanking		
(6.8	Detect	tors	137
		6.8.1	Basic Properties of a Detector	137

vii

		6.8.2	Single and Array Detectors	139
		6.8.3	Scintillator/Photomultiplier Detector	139
		6.8.4	Semiconductor Detectors	141
101		6.8.5	CCD Cameras	142
	6.9	Imagin	ng Using Transmitted Electrons	145
		6.9.1	The Diffraction Pattern	145
		6.9.2	Coherent Effects in the Diffraction Pattern	147
		6.9.3	Small Angular Range - Bright Field and Tilted	
			Dark Field Images	152
		6.9.4	Medium Angular Range – MAADF	152
		6.9.5	High Angular Range – HAADF	153
		6.9.6	Configured Detectors	153
	6.10	Signal	Acquisition	154
		Ackno	owledgements	159
		3.9.5	The Rolation High Barbats Probes Steel .	
7	Elec	tron Er	nergy Loss Spectrometry and Energy	
	Disp	ersive	X-ray Analysis	163
	Rik	Brydso	on and Nicole Hondow	
	7.1	What	is EELS and EDX?	164
		7.1.1	Basics of EDX	164
		7.1.2	Basics of EELS	166
		7.1.3	Common Features For Analytical	
			Spectrometries	168
	7.2	Analy	tical Spectrometries in the Environment of the	
		Electr	on Microscope	170
		7.2.1	Instrumentation for EDX	170
		7.2.2	EELS Instrumentation	174
		7.2.3	Microscope Instrumentation for Analytical	
			Spectroscopies	178
	7.3	Eleme	ental Analysis and Quantification Using EDX	182
	7.4	Low I	Loss EELS – Plasmons, IB Transitions	
		and B	and Gaps	187
	7.5	Core]	Loss EELS	191
		7.5.1	Elemental Quantification	191
		7.5.2	Near-Edge Fine Structure For Chemical and	
			Bonding Analysis	195
		7.5.3	Extended-Edge Fine Structure For Bonding	
			Analysis	200
	7.6	EDX	and EELS Spectral Modelling	201
		7.6.1	Total Spectrum Modelling	201

.

		7.6.2 EELS Modelling of Near Edge Structures and			
		also the Low Loss	201		
	7.7	Spectrum Imaging: EDX and EELS	202		
	7.8	Ultimate Spatial Resolution of EELS	206		
	7.9	Conclusion	207		
8	Applications of Aberration-Corrected Scanning				
	Tra	nsmission Electron Microscopy	211		
	Mervyn D. Shannon				
	8.1	Introduction	211		
	8.2	Sample Condition	212		
	8.3	HAADF Imaging	213		
		8.3.1 Imaging of Isolated Atoms	213		
		8.3.2 Line Defects (1-D)	219		
		8.3.3 Interfaces and Extended Defects (2-D)	220		
		8.3.4 Detailed Particle Structures (3-D)	226		
		8.3.5 Low-loss EELS	230		
		8.3.6 Core-loss EELS and Atomic-scale			
		Spectroscopic Imaging	231		
	8.4	Conclusions	236		
9	Abe	erration-Corrected Imaging in CTEM	241		
	Sara	ah J. Haigh and Angus I. Kirkland			
	9.1	Introduction	241		
	9.2	Optics and Instrumentation for Aberration-			
		Corrected CTEM	243		
		9.2.1 Aberration-Correctors	243		
		9.2.2 Related Instrumental Developments	243		
	9.3	CTEM Imaging Theory	244		
		9.3.1 CTEM Image Formation	244		
		9.3.2 The Wave Aberration Function	246		
		9.3.3 Partial Coherence	252		
	9.4	Corrected Imaging Conditions	253		
		9.4.1 The Use of Negative Spherical Aberration	254		
		9.4.2 Amplitude Contrast Imaging	256		
	9.5	Aberration Measurement	256		
		9.5.1 Aberration Measurement From Image Shifts	256		
		9.5.2 Aberration Measurement from			
		Diffractograms	257		

	9.5.3	An Alternative Approach to Aberration	
		Measurement	258
9.6	Indire	ct Aberration Compensation	258
9.7	Advar	ntages of Aberration-Correction for CTEM	259
9.8	Concl	usions	259
	Ackno	owledgements	260
Appendix A:		Aberration Notation	263
Appendix B:		General Notation	267
Index			275

X

HAADF Imaging 8.3.3.1 Imaging of 8.3.2 Internation 8.3.3 Internation 9.3.2. The Wave Abernmon Function as Dinal one