
Contents
PART ONE
Preliminaries 1

1 An Overview of ANSI C 3
1.1
1.2

13

14

1.5

What is C? 4
The structure of a C program 5
Comments 7, Library inclusions 8, Program-level 
definitions 8, Function prototypes 9, The main program 9, 
Function definitions 10
Variables, values, and types 11
Variables 11, Naming conventions 12, Local and global 
variables 13, The concept of a data type 13, Integer 
types 14, Floating-point types 15, Text types 16, Boolean 
type 18, Simple input and output 18

Expressions 20
Precedence and associativity 21, Mixing types in an 
expression 22, Integer division and the remainder 
operator 23, Type casts 24, The assignment operator 24, 
Increment and decrement operators 26, Boolean operators 28

Statements 30
Simple statements 30, Blocks 30, The if statement 31, The 
switch statement 32, The while statement 34, The for 
statement 36

1.6 Functions 39
Returning results from functions 39, Function definitions and 
prototypes 40, The mechanics of the function-calling 
process 40, Stepwise refinement 41
Summary 42
Review questions 43
Programming exercises 45

2 Data Types in C 51
2 1

2.2

2.3

Enumeration types 52
Internal representation of enumeration types 53, Scalar 
types 54, Understanding typedef 55
Data and memory 56
Bits, bytes, and words 56, Memory addresses 57
Pointers 59
Using addresses as data values 60, Declaring pointer 
variables 60, The fundamental pointer operations 61, The 
special pointer null 64, Passing parameters by reference 64

•••
VIII



2.4 Arrays 66
Array declaration 69, Array selection 70, Effective and 
allocated sizes 71, Passing arrays as parameters 72, 
Initialization of arrays 72, Multidimensional arrays 75

2.5 Pointers and arrays 77
Pointer arithmetic 78, Incrementing and decrementing 
pointers 81, The relationship between pointers and arrays 82

2.6 Records 84
Defining a new structure type 85, Declaring structure 
variables 85, Record selection 86, Initializing records 86, 
Pointers to records 87

2.7 Dynamic allocation 88
The type void * 89, Coping with memory limitations 90, 
Dynamic arrays 91, Dynamic records 93
Summary 94
Review questions 95
Programming exercises 98

Libraries and Interfaces 107
3.1

3.2

3.3 

9 43.4

3.5

The concept of an interface 108
Interfaces and implementations 108, Packages and 
abstractions 109, Principles of good interface design 110
Random numbers 111
The structure of the random.h interface 111, Constructing a 
client program 115, The ANSI functions for random 
numbers 117, The random.c implementation 120
Strings 123
The underlying representation of a string 124, The data type 
string 125, The ANSI string library 127, The strlib.h 
interface 132
The standard I/O library 138
Data files 138, Using files in C 139, Standard files 141, 
Character I/O 141, Rereading characters from an input 
file 142, Updating a file 142, Line-oriented I/O 145, 
Formatted I/O 146, The scanf functions 146
Other ANSI libraries 148
Summary 150
Review questions 151
Programming exercises 154



PART TWO
Recursion and Algorithmic Analysis 161

4 Introduction to Recursion
4.1 A simple example of recursion 164
4.2 The factorial function 166

163

The recursive formulation of Fact 167, Tracing the recursive 
process 167, The recursive leap of faith 171

4.3 The Fibonacci function 172
Computing terms in the Fibonacci sequence 173, Gaining 
confidence in the recursive implementation 174, Efficiency of 
the recursive implementation 176, Recursion is not to 
blame 176

4.4 Other examples of recursion 178
Detecting palindromes 179, Binary search 180, Mutual 
recursion 182

4.5 Thinking recursively 185
Maintaining a holistic perspective 185, Avoiding the common 
pitfalls 186
Summary 187
Review questions 188
Programming exercises 190

5 Recursive Procedures 195
5.1 The Tower of Hanoi 196

Framing the problem 197, Finding a recursive strategy 198, 
Validating the strategy 200, Coding the solution 201, 
Tracing the recursive process 201

5.2 Generating permutations 206
The recursive insight 207

5.3 Graphical applications of recursion 208
The graphics library 209, An example from computer 
art 212, Fractals 217
Summary 222
Review questions 223
Programming exercises 224

6 Backtracking Algorithms 235
6.1 Solving a maze by recursive backtracking 236

The right-hand rule 236, Finding a recursive approach 237, 
Identifying the simple cases 238, Coding the maze solution 
algorithm 239, Convincing yourself that the solution 
works 243



6.2 Backtracking and games 245
The game of nim 246, A generalized program for two-player 
games 248, The minimax strategy 254, Implementing the 
minimax algorithm 257, Using the general strategy to solve a 
specific game 259
Summary 272
Review questions 272
Programming exercises 274

7 Algorithmic Analysis 283
7.1 The sorting problem 284

The selection sort algorithm 285, Empirical measurements of 
performance 286, Analyzing the performance of selection 
sort 287

7.2 Computational complexity 288
Big-O notation 289, Standard simplifications of big-O 290,
The computational complexity of selection sort 290, 
Predicting computational complexity from code structure 291, 
Worst-case versus average-case complexity 293, A formal 
definition of big-O 294

7.3 Recursion to the rescue 296
The power of divide-and-conquer strategies 296, Merging two 
arrays 297, The merge sort algorithm 298, The 
computational complexity of merge sort 300, Comparing N2 
and N log N performance 302

7.4 Standard complexity classes 303
7.5 The Quicksort algorithm 306

Partitioning the array 308, Analyzing the performance of 
Quicksort 311

7.6 Mathematical induction 312
Summary 315
Review questions 316
Programming exercises 318

PART THREE
Data Abstraction 325

8 Abstract Data Types
8.1 Stacks 328

327

The basic stack metaphor 329, Stacks and function 
calls 329, Stacks and pocket calculators 330



8.2

8.3
8.4

8.5

Defining a stack ADT 331
Defining the types for the stack abstraction 331, Opaque 
types 333, Defining the stack.h interface 334
Using stacks in an application 338
Implementing the stack abstraction 342
Defining the concrete type 342, Implementing the stack 
operations 342, The advantages of opaque types 344,
Improving the stack.c implementation 345
Defining a scanner ADT 347
The dangers of encapsulated state 347, Abstract data types as 
an alternative to encapsulated state 348, Implementing the 
scanner abstraction 353
Summary 358
Review questions 359
Programming exercises 360

9 Efficiency and ADTs 373
9.1 The concept of an editor buffer 374
9.2 Defining the buffer abstraction 375

Functions in the buffer.h interface 376, Coding the editor 
application 379

9.3 Implementing the editor using arrays 380
Defining the concrete type 381, Implementing the buffer 
operations 382, The computational complexity of the array 
implementation 385

9.4 Implementing the editor usina stacks 386
Defining the concrete structure for the stack-based buffer 387, 
Implementing the buffer operations 387, Comparing 
computational complexities 388

9.5 Implementing the editor using linked lists 391
The concept of a linked list 392, Designing a linked-list data 
structure 393, Using a linked list to represent the
buffer 394, Insertion into a linked-list buffer 396, Deletion 
in a linked-list buffer 398, Cursor motion in the linked-list 
representation 399, Linked-list idioms 402, Completing the 
buffer implementation 403, Computational complexity of the 
linked-list buffer 404, Doubly linked lists 407, Time-space 
tradeoffs 408
Summary 409
Review questions 410
Programming exercises 411

xii



10 Linear Structures 419
10.1
10.2

10.3

Stacks revisited 420
Queues 424
The structure of the queue.h interface 427, Array-based 
implementation of queues 427, Linked-list representation of 
queues 433
Simulations involving queues 436
Simulations and models 439, The waiting-line model 440, 
Discrete time 440, Events in simulated time 441, 
Implementing the simulation 442
Summary 448
Review questions 449
Programming exercises 451

11 Symbol Tables 457
11.1

11.2

11.3
11.4

11.5

11.6

11.7

Defining a symbol table abstraction 458
Choosing types for values and keys 458, Representing an 
undefined entry 460, A preliminary version of the symbol 
table interface 461!
Hashing 462
Implementing the hash table strategy 463, Choosing a hash 
function 468, Determining the number of buckets 470
Limitations of the preliminary interface 471
Using functions as data 473
A general plotting function 473, Declaring pointers to
functions and function classes 474, Implementing
PlotFunction 475, The qsort function 476
Mapping functions 481
Mapping over entries in a symbol table 481, Implementing
MapSymbolTable 484, Passing client data to callback 
functions 485
Iterators 486
Using iterators 487, Defining the iterator interface 488,
Implementing the iterator abstraction for symbol tables 488
Command dispatch tables 492
Summary 496
Review questions 497
Programming exercises 499

• • •
XIII



PART FOUR
Recursive Data 505
12 Recursive Lists

12.1 The recursive formulation of a list 508
12.2 Defining an abstract list type 510

Immutable types 513, Functions that manipulate list

507

structure 514, Concatenating lists 517, Internal sharing in 
immutable types 519

12.3 Using lists to represent large integers 520
The bigint.h interface 521, Representing the type 
bigintADT 521, Implementing the bigint package 524,
Using the bigint package 529

Summary 531
Review questions 532
Programming exercises 533

13 Trees
13.1

537

13.2

13.3

13.4

Family trees 538
Terminology used to describe trees 539, The recursive nature 
of a tree 540, Representing family trees in C 540
Binary search trees 542
The underlying motivation for using binary search trees 543, 
Finding nodes in a binary search tree 544, Inserting new 
nodes in a binary search tree 545, Tree traversals 549
Balanced trees 551
Tree-balancing strategies 552, Illustrating the AVL 
idea 553, Single rotations 555, Double rotations 557, 
Implementing the AVL algorithm 558
Defining a general interface for binary search trees 561
Allowing the client to define the node structure 563, 
Generalizing the types used for keys 570, Deleting 
nodes 570, Implementing the binary search tree
Dockage 572, Implementing the symtab.h interface using 
Dinary trees 572
Summary 580
Review questions 581
Programming exercises 583

14 Expression Trees 593
14.1 Overview of the interpreter 594
14.2 The abstract structure of expressions 597

A recursive definition of expressions 597, Ambiguity 599, 
Expression trees 600, Defining an abstract interface for 
expressions 601

XIV



14.3 Defining the concrete expression type 606
Union types 606, Using tagged unions to represent
expressions 608, Visualizing the concrete
representation 610, Implementing the constructor and selector 
functions 612

14.4 Parsing an expression 615
Parsing and grammars 615, Parsing without precedence 617,
Adding precedence to the parser 618

14.5 Evaluating an expression 621
Summary 623
Review questions 626
Programming exercises 627

15 Sets 641
15.1

15.2

15.3
15.4

Sets as a mathematical abstraction 642
Membership 643, Set operations 643, Identities on 
sets 645
Designing a set interface 646
Defining the element type 647, Writing the set.h 
interface 649, Character sets 649, Using pointer sets to 
avoid duplication 654
Implementing the set package 654
Designing a polymorphic iterator 662
Generalizing the prototypes of the iterator functions 663, 
Adding polymorphism to the iterator implementation 663, 
Exporting a collection type 665, Coding the iterator 
package 669, The foreach idiom 673
Enhancing the efficiency of integer sets 674 
Characteristic vectors 674, Packed arrays of bits 675, 
Bitwise operators 676, Implementing characteristic vectors 
using the bitwise operators 678, Implementing the high-level 
set operations 680, Using a hybrid implementation 681
Summary 681
Review questions 683
Programming exercises 686 

16 Graphs 693
16.1 The structure of a graph 694 

Directed and undirected graphs 695, Paths and cycles 697, 
Connectivity 697

16.2 Implementation strategies for graphs 698 
Representing connections using an adjacency list 700, 
Representing connections using an adjacency matrix 700

XV



16.3

16.4

16.5

Extending the graph abstraction 703
Associating data with nodes and graphs 706, Making arcs 
explicit 706, Iteration and graphs 708, Layered 
abstractions 708, A set-based interface for graphs 709
Graph traversals 718
Depth-first search 719, Breadth-first search 721
Finding minimum paths 724
An efficient implementation of priority queues 728
Summary 732
Review questions 733
Programming exercises 735

17 Looking Ahead to Java
17.1 The object-oriented paradigm 746

745

The history of object-oriented programming 747, Objects, 
classes, and methods 748, Class hierarchies and 
inheritance 749

17.2 An introduction to Java 751
The structure of the Web 752, Applets 753, Executing a
Java applet 757

17.3 The structure of Java 758
The syntax of Java 760, Atomic types in Java 761, 
Defining a new class 762, Constructor methods 763, The 
keyword this 764, Defining methods 765, Defining 
subclasses 767

17.4 Predefined classes in Java 774
The String class 775, The Hashtable class 776, 
Object wrappers for the atomic types 779, The Vector 
class 779, The Stack class 781

17.5 Tools for creating interactive applets 782
Components and containers 783, Tne action method 784, 
A sample applet for drawing shapes 785, Moving ahead 793
Summary 794
Review questions 794
Programming exercises 796

Index

XVI


