
Contents

Preface ix
Chapter Dependency Chart xi

PART ONE
Problem-Solving Techniques
1 Principles of Programming 

and Software Engineering
1.1 Software Engineering and Object-Oriented Design 4

An Examination of Problem Solving 4 
Aspects of an Object-Oriented Solution 4
Abstraction and Information Hiding 5 
Principles of Object-Oriented Programming 7
Object-Oriented Analysis and Design 8
Applying the UML to OOA/D 9
The Software Life Cycle 19
Iterative and Evolutionary Development 19
Rational Unified Process Development Phases 20
What About the Waterfall Method of Development? 23

1.2 Achieving a Better Solution 24
Evaluation of Designs and Solutions 24
Operation Contracts 27
Verification 29
What Is a Good Solution? 32

1.3 Key Issues in Programming 34
Modularity 35
Style 36
Modifiability 45
Ease of Use 47
Fail-Safe Programming 48
Debugging 53
Testing 55

• • • 
III



IV Contents

2 Recursion: The Mirrors 65
2.1 Recursive Solutions 66

A Recursive Valued Function: The Factorial of n 69 
A Recursive void Function: Writing a String Backward 76

2.2 Counting Things 85
Multiplying Rabbits (The Fibonacci Sequence) 85 
Organizing a Parade 87
Mr. Spock’s Dilemma (Choosing k Out of n Things) 90

2.3 Searching an Array 93
Finding the Largest Item in an Array 93 
Binary Search 94 
Finding the kth Smallest Item of an Array 98

2.4 Organizing Data 102 
The Towers of Hanoi 102

2.5 Recursion and Efficiency 106

3 Data Abstraction: The Walls 121
3.1 Abstract Data Types 122
3.2 Specifying ADTs 127

The ADT List 128
The ADT Sorted List 133
Designing an ADT 134
Axioms (Optional) 139

3.3 Implementing ADTs 141
C++ Classes 143
C++ Namespaces 152
An Array-Based Implementation of the ADT List 154 
C++ Exceptions 160
An Implementation of the ADT List Using Exceptions 162

4 Linked Lists 171
4.1 Preliminaries 172

Pointers 173
Dynamic Allocation of Arrays 180
Pointer-Based Linked Lists 182

4.2 Programming with Linked Lists 184
Displaying the Contents of a Linked List 184
Deleting a Specified Node from a Linked List 186
Inserting a Node into a Specified Position of a Linked List 189
A Pointer-Based Implementation

of the ADT List 194
Comparing Array-Based and Pointer-Based Implementations 202
Saving and Restoring a Linked List by Using a File 205
Passing a Linked List to a Method 208
Processing Linked Lists Recursively 209
Objects as Linked List Data 214



Contents V

4.3 Variations of the Linked List 215
Circular Linked Lists 216
Dummy Head Nodes 217
Doubly Linked Lists 218

4.4 Application: Maintaining an Inventory 221
4.5 The C++ Standard Template Library 227 

Containers 228
Iterators 229
The Standard Template Library Class list 230

5 Recursion as a Problem-Solving Technique 247
5.1 Backtracking 248

The Eight Queens Problem 248
Implementing Eight Queens Using the STL Class vector 250

5.2 Defining Languages 256
The Basics of Grammars 256
Two Simple Languages 258 •
Algebraic Expressions 260

5.3 The Relationship Between Recursion
and Mathematical Induction 270

The Correctness of the Recursive Factorial Function 270
The Cost of Towers of Hanoi 271

PART TWO
Problem Solving with Abstract 
Data Types 283
6 Stacks 285
6.1 The Abstract Data Type Stack 286 

Developing an ADT During the Design of a Solution 286
6.2 Simple Applications of the ADT Stack 292 

Checking for Balanced Braces 292 
Recognizing Strings in a Language 294

6.3 Implementations of the ADT Stack 296
An Array-Based Implementation of the ADT Stack 297
A Pointer-Based Implementation of the ADT Stack 301
An Implementation That Uses the ADT List 305
Comparing Implementations 308
The Standard Template Library Class stack 309

6.4 Application: Algebraic Expressions 311
Evaluating Postfix Expressions 311
Converting Infix Expressions to Equivalent

6.5
Postfix Expressions 313

Application: A Search Problem 316
A Nonrecursive Solution That Uses a Stack 317
A Recursive Solution 327



■

VI Contents

6.6

7.2

7.3

7.5

8
8.1

8.2

8.3
8.4

8.5
8.6
8.7

9 
91 ■ I

The Relationship Between Stacks and Recursion 329

Queues 343
The Abstract Data Type Queue 344
Simple Applications of the ADT Queue 346
Reading a String of Characters 346
Recognizing Palindromes 347
Implementations of the ADT Queue 348
A Pointer-Based Implementation 349
An Array-Based Implementation 354
An Implementation That Uses the ADT List 361
The Standard Template Library Class queue 364
Comparing Implementations 367
A Summary of Position-Oriented ADTs 368
Application: Simulation 369

Advanced C++ Topics 387
Inheritance Revisited 388
Public, Private, and Protected Inheritance 395
Is-a, Has-a, and As-a Relationships 395
Virtual Methods and Late Binding 398
Abstract Base Classes 404
Friends 408
The ADTs List and Sorted List Revisited 411
Implementations of the ADT Sorted List That Use the ADT List 413
Class Templates 419
Overloaded Operators 426
Iterators 431
Implementing the ADT List Using Iterators 433

■Жж

Algorithm Efficiency and Sorting
Measuring the Efficiency of Algorithms 446
The Execution Time of Algorithms 447
Algorithm Growth Rates 448
Order-of-Magnitude Analysis and Big 0 Notation 450
Keeping Your Perspective 454
The Efficiency of Searching Algorithms 456
Sorting Algorithms and Their Efficiency 458
Selection Sort 459
Bubble Sort 462
Insertion Sort 464
Mergesort 466
Quicksort 472
Radix Sort 484
A Comparison of Sorting Algorithms 486
The Standard Template LibrarySorting Algorithms 487

445



Contents • •

VII

10 Trees
10.1 Terminology 500
10.2 The ADT Binary Tree 508

Traversals of a Binary Tree 512
Possible Representations of a Binary Tree 515
A Pointer-Based Implementation of the ADT Binary Tree 519

10.3 The ADT Binary Search Tree 536
Algorithms for the ADT Binary Search Tree Operations 539
A Pointer-Based Implementation of the ADT Binary Search Tree
The Efficiency of Binary Search Tree Operations 564
Treesort 568
Saving a Binary Search Tree in a File 569
The STL Search Algorithms 572

499

555

10.4 General Trees 575

11 Tables and Priority Queues 589
11.1 The ADT Table 590

Selecting an Implementation 595
A Sorted Array-Based Implementation of the ADT Table 602 
A Binary Search Tree Implementation of the ADT Table 607

11.2 The ADT Priority Queue:
A Variation of the ADT Table 610 
Heaps 614
A Heap Implementation of the ADT Priority Queue 623 
Heapsort 626

11.3 Tables and Priority Queues in the STL 630 
The STL Associative Containers 630 
The STL priority_queue Class and Heap Algorithms 638

12 Advanced Implementations of Tables 649
12.1 Balanced Search Trees 650

2-3 Trees 651
2-3-4 Trees 670
Red-Black Trees 678
AVL Trees 681

12.2 Hashing 686
Hash Functions 690
Resolving Collisions 693
The Efficiency of Hashing 701
What Constitutes a Good Hash Function? 704
Table Traversal: An Inefficient Operation Under Hashing 706
Implementing a HashMap Class Using the STL 707

12.3 Data with Multiple Organizations 710



В а■

VIII Contents

13 Graphs
13.1 Terminology 722
13.2 Graphs as ADTs 725

Implementing Graphs 726
Implementing a Graph Class Using the STL 729

13.3 Graph Traversals 732
Depth-First Search 733
Breadth-First Search 736
Implementing a BFS Class Using the STL 737

13.4 Applications of Graphs 740
Topological Sorting 740
Spanning Trees 743
Minimum Spanning Trees 747
Shortest Paths 749
Circuits 754
Some Difficult Problems 756

14 Processing Data in External Storage
14.1 A Look at External Storage 766
14.2 Sorting Data in an External File 769
14.3 External Tables 776

Indexing an External File 779
External Hashing 783
B-Trees 787
Traversals 797
Multiple Indexing 799

721

765

A Review of C++ Fundamentals 807

ASCII Character Codes 880

C++ Header Files and Standard Functions 881

D Mathematical Induction 887

E Standard Template Library 893

F C++ Documentation Systems 905
Glossary 909
Answers to Self-Test Exercises 935
Index 953


