
%

contents

foreword xiii
preface xv
acknowledgments xvi
about this book xvii

Part 1 Introduction to functional programming1

What is junctional programming? 3
1.1 The benefits of FP: a simple example 4

A program with side effects 4 ■ A functional solution: removing the
side effects 6

1.2 Exactly what is a (pure) function? 9
1.3 Referential transparency, purity, and the

substitution model 10
1.4 Summary 13

Getting started with functional programming in Scala 14
2.1
2.2
2.3
2.4

Introducing Scala the language: an example 15
Running our program 17
Modules, objects, and namespaces 18
Higher-order functions: passing functions to

functions 19
A short detour: writing loops functionally 20 ■ Writing our
first higher-order function 21

V11

CONTENTS

2.5 Polymorphic functions: abstracting over types 22
An example of a polymorphic function 23 ■ Calling HOFs with
anonymous functions 24

2.6 Following types to implementations 25
2.7 Summary 28

Functional data structures 29
3.1 Defining functional data structures 29
3.2 Pattern matching 32
3.3 Data sharing in functional data structures 35

The efficiency of data sharing 36 ■ Improving type inference
for higher-order functions 37

3.4 Recursion over lists and generalizing to higher-order
functions 38
More functions for working with lists 41 ■ Loss of efficiency
when assembling list functions from simpler components 44

3.5 Trees 44
3.6 Summary 47

Handling errors without exceptions 48
4.1 The good and bad aspects of exceptions 48
4.2 Possible alternatives to exceptions 50
4.3 The Option data type 52

Usage patterns for Option 53 ■ Option composition, lifting,
and wrapping exception-oriented APIs 56

4.4 The Either data type 60
4.5 Summary 63

Strictness and laziness 64
5.1 Strict and non-strict functions 65
5.2 An extended example: lazy lists 68

Memoizing streams and avoiding recomputation 69 ■ Helper
functions for inspecting streams 69

5.3 Separating program description from evaluation 70
5.4 Infinite streams and corecursion 73
5.5 Summary 77

CONTENTS ix

Purely functional state 78
6.1
6.2
6.3
6.4

6.5
6.6
6.7

Generating random numbers using side effects 78
Purely functional random number generation 80
Making stateful APIs pure 81
A better API for state actions 84

Combining state actions 85 ■ Nesting state actions 86

A general state action data type 87
Purely functional imperative programming 88
Summary 91

Part 2 Functional design and combinator libraries...93

Purely functional parallelism 95
7.1

7.2
7.3
74

7.5
7.6

Choosing data types and functions 96
A data type for parallel computations 97 ■ Combining parallel
computations 100 ■ Explicit forking 102

Picking a representation 104
Refining the API 105
The algebra of an API 110

The law of mapping 110 ■ The law of forking 112
Breaking the law: a subtle bug 113 ■ A fully non-blocking
Par implementation using actors 115

Refining combinators to their most general form 120
Summary 123

Property-based testing 124
8.1
8.2

8.3
8.4

A brief tour of property-based testing 124
Choosing data types and functions 127

Initial snippets of an API 127 ■ The meaning and API of
properties 128 ■ The meaning and API of generators 130
Generators that depend on generated values 131 ■ Refining the
Prop data type 132

Test case minimization 134
Using the library and improving its usability 136

Some simple examples 137 • Writing a test suite for parallel
computations 138

Testing higher-order functions and future directions 1428.5

X CONTENTS

8.6 The laws of generators 144
8.7 Summary 144

Parser combinators 146

PART 3

Monoids 175

9.1
9.2

9.3
9.4

9.5

9.6

9.7

Designing an algebra, first 147
A possible algebra 152

Slicing and nonempty repetition 154

Handling context sensitivity 156
Writing aJSON parser 158

The JSON format 158 - A JSON parser 159

Error reporting 160
A possible design 161 ■ Error nesting 162
Controlling branching and backtracking 165

Implementing the algebra 165
One possible implementation 166 ■ Sequencing parsers 166
Labeling parsers 167 • Failover and backtracking 168
Context-sensitive parsing 169

Summary 171

COMMON STRUCTURES IN FUNCTIONAL DESIGN........173

10.1
10.2
10.3
10.4
10.5
10.6

10.7

What is a monoid? 175
Folding lists with monoids 178
Associativity and parallelism 179
Example: Parallel parsing 181
Foldable data structures 183
Composing monoids 184

Assembling more complex monoids 185 ■ Using composed
monoids to fuse traversals 186

Summary 186

Monads 187
11.1 Functors: generalizing the map function 187

Functor laws 189

CONTENTS XI

11.2 Monads: generalizing the flatMap and unit functions 190
The Monad trait 191

11.3 Monadic combinators 193
11.4 Monad laws 194

The associative law 194 • Proving the associative law for a specific
monad 196 ■ The identity laws 197

11.5 Just what is a monad? 198
The identity monad 199 • The State monad and partial type
application 200

11.6 Summary 204

Applicative and traversable functors 205
12.1 Generalizing monads 205
12.2 The Applicative trait 206
12.3 The difference between monads and applicative

functors 208
The Option applicative versus the Option monad 209
The Parser applicative versus the Parser monad 210

12.4 The advantages of applicative functors 211
Not all applicative functors are monads 211

12.5 The applicative laws
Left and right identity
Naturality of product

12.6 Traversable functors

214
214 ■ Associativity 215

216

218
12.7 Uses of Traverse 219

From monoids to applicative functors 220 ■ Traversals with
State 221 ■ Combining traversable structures 223 ■ Traversal
fusion 224 ■ Nested traversals 224 ■ Monad composition 225

12.8 Summary 226

PART 4 EFFECTS AND I/O227

External effects and I/O 229
13.1 Factoring effects 229

xii CONTENTS

13.2

13.3

13.4

13.5
13.6

13.7
13.8

A simple IO type 231
Handling input effects 232 ■ Benefits and drawbacks of
the simple IO type 235

Avoiding the StackOverflowError 237
Reifying control flow as data constructors 237
Trampolining: a general solution to stack overflow 239

A more nuanced IO type 241
Reasonably priced monads 242 ■ A monad that supports only
console I/O 243 ■ Pure interpreters 246

Non-blocking and asynchronous I/O 247
A general-purpose IO type 250

The main program at the end of the universe 250

Why the IO type is insufficient for streaming I/O 251
Summary 253

1 Local effects and mutable state 254
14.1
14.2

14.3

14.4

Purely functional mutable state 254
A data type to enforce scoping of side effects 256

A little language for scoped mutation 256 ■ An algebra of
mutable references 258 ■ Running mutable state actions 259
Mutable arrays 262 ■ A purely functional in-place quicksort 263

Purity is contextual 264
What counts as a side effect? 266

Summary 267

) Stream processing and incremental I/O 268
15.1
15.2

15.3

15.4
15.5

Problems with imperative I/O: an example 268
Simple stream transducers 271

Creating processes 272 • Composing and appending
processes 275 ■ Processing files 278

An extensible process type 278
Sources 281 ■ Ensuring resource safety 283 ■ Single-input
processes 285 ■ Multiple input streams 287 ■ Sinks 290
Effectful channels 291 ■ Dynamic resource allocation 291

Applications 292
Summary 293
index 295

