BIOLOGY/ECOLOGY/COMPLEXITY STUDIES

How do we explain the remarkably abrupt changes that sometimes occur in nature and society—and can we predict why and when they happen? This book offers a comprehensive introduction to critical transitions in complex systems—the radical changes that happen at tipping points when thresholds are passed.

Marten Scheffer accessibly describes the dynamical systems theory behind critical transitions, covering catastrophe theory, bifurcations, chaos, and more. He gives examples of critical transitions in lakes, oceans, terrestrial ecosystems, climate, evolution, and human societies. And he demonstrates how to deal with these transitions, offering practical guidance on how to predict tipping points, how to prevent "bad" transitions, and how to promote critical transitions that work for us and not against us. Scheffer shows the time is ripe for understanding and managing critical transitions in the vast and complex systems in which we live. This book can also serve as a textbook and includes a detailed appendix with equations.

MARTEN SCHEFFER is professor of environmental sciences at Wageningen University in the Netherlands. He is the author of *Ecology* of Shallow Lakes.

- Provides an accessible introduction to dynamical systems theory
- Covers critical transitions in lakes, oceans, terrestrial ecosystems, the climate, evolution, and human societies
- Explains how to predict tipping points
- Offers strategies for preventing "bad" transitions and triggering "good" ones
 Features an appendix with equations

"This is an important book. Critical transitions and resilience are powerful explanatory tools in ecology today, and it is significant that Scheffer, the leading expert in the applications of critical transitions in ecology, has written a monograph in this area. Scheffer is an excellent writer, and a very good expositor of theoretical concepts in ecology. The ideas in this book should be part of every educated person's mental framework." —Donald L. DeAngelis, *University of Miami*

"This is a timely book that will have considerable impact on multiple disciplines, including ecology, the social sciences, and economics. It focuses on the theory, examples, and implications of complex systems, particularly critical transitions resulting from positive feedbacks. Scheffer has always been a master at presenting complex issues in a simple way, and this book is no exception. This is a rare gem." —Jon Norberg, *Stockholm University*

PRINCETON STUDIES IN COMPLEXITY Simon A. Levin and Steven H. Strogatz, Series Editors

Author Photo by Milena Holmgren Cover Photo by Marten Scheffer

PRINCETON press.princeton.edu

Acknowledgments

CHAPTER 1. Introduction

1.1 Coral Reef Collapse1.2 The Birth of the Sahara Desert1.3 Shifts in Societies1.4 Content of this Book

Part I Theory of Critical Transitions

CHAPTER 2. Alternative Stable States

2.1 The Basics2.2 Some Mechanisms2.3 Synthesis

CHAPTER 3. Cycles and Chaos

3.1 The Limit Cycle3.2 Complex Dynamics3.3 Basin Boundary Collision3.4 Synthesis

X111 1 2 A Basins of Annaction 3 5 6 11 13 25 36 37 37 42 50 54

CHAPTER 4. Emergent Patterns in Complex Systems	55
4.1 Spatial Patterns	56
4.2 Stability of Complex Interacting Networks	65
4.3 The Adaptive Cycle Theory	75
4.4 Synthesis	79
CHAPTER 5. Implications of Fluctuations,	
Heterogeneity, and Diversity	81
5.1 Permanent Change	82
5.2 Spatial Heterogeneity and Modularity	85
5.3 Diversity of Players	90
5.4 Synthesis	95
CHAPTER 6. Conclusion: From Theoretical	
Concepts to Reality	96
6.1 Alternative Stable States	96

6.2 Basins of Attraction
6.3 Resilience
6.4 Adaptive Capacity
6.5 Critical Transitions
6.5 Synthesis

Part II CASE STUDIES

netalistic Collision ×

CHAPTER 7. Lakes	109
7.1 Transparency of Shallow Lakes	110
7.2 Dynamics	125
7.3 Other Alternative Stable States	131
7.4 Synthesis	138
CHADTED & Climate	120

ATTACT THE ALALLER FA

8.1 Deep Time Climate Shifts

8.2 Glaciation Cycles

8.3 Abrupt Climate Change on Shorter Timescales

8.4 Synthesis

157

137

141

149

CHAPTER 9. Evolution	166
9.1 Introduction	166
9.2 Early Animal Evolution and the Cambrian Explosion	168
9.3 The End-Permian Extinction	172
9.4 The Angiosperm Radiation	174
9.5 From Dinosaurs to Mammals	176
9.6 Global Warming and the Birth of Primates, Deer,	
and Horses	177
9.7 In Search of the Big Picture	178
9.8 Synthesis	184
CHAPTER 10. Oceans	186
10.1 Open Ocean Regime Shifts	187
10.2 Coastal Ecosystems	201
10.3 Synthesis	213
CHAPTER 11. Terrestrial Ecosystems	216
11.1 Vegetation-Climate Shifts in Dry Regions	216
11.2 Small-Scale Transitions in Semiarid Vegetation	221
11.3 Boreal Forests and Tundra	226
11.4 The Rise and Fall of Raised Bogs	230
11.5 Species Extinction in Fragmented Landscapes	234
11.6 Epidemics as Critical Transitions	237
11.7 Synthesis	239
CHAPTER 12. Humans	240
12.1 Shifting Cells	242
12.2 Shifting Minds	243
12.3 Behavioral Lock-In	244
12.4 Inertia and Shifts in Group Attitudes	246
12.5 Societies in Crisis	250
126 Synthesis	257

12.0 0y11010313

CHAPTER 13. Conclusion: Critical Transitions

Part III DEALING WITH CRITICAL TRANSITIONS

CHAPTER 14. How to Know if Alternative	
Basins of Attraction Exist	265
14.1 Hints from Field Data	265
14.2 Experimental Evidence	270
14.3 Mechanistic Insight	273
14.4 Synthesis	280
CHAPTER 15. How to Know if a Threshold Is Near	282
15.1 The Theory: Signs of Upcoming Transitions	283
15.2 Precursors of Transitions in Real Systems	290
15.3 Reliablility of the Signals	293
15.4 Synthesis	294
CHAPTER 16. The Winding Road from Science to Policy	296
16.1 Exploiting Nature in the Smartest Way	297
16.2 Barriers to Good Solutions	303
16.3 Synthesis	309
CHAPTER 17. New Approaches to Managing Change	311
17.1 Promoting Good Transitions	312
17.2 Preventing Bad Transitions	320
17.3 Synthesis	324
CHAPTER 18. Prospects	326
18.1 The Delicate Issue of the Burden of Proof	326
18.2 Toward a Practical Science of Critical Transitions	327

Appendix

329

A.1 Logistic Growth
A.2 Allee Effect
A.3 Overexploitation
A.4 Competition between Two Species
A.5 Multispecies Competition

332332334338

A.6 Predator–Prey Cycles A.7 The Hopf Bifurcation A.8 Stabilization by Spatial Heterogeneity A.9 Basin Boundary Collision A.10 Periodic Forcing A.11 Self-Organized Patterns A.12 Alternative Stable States in Shallow Lakes A.13 Floating Plants A.14 Contingency in Behavior

Glossary

Notes

Index

353

359

379