Contents

The second bulk of the main bolity of the west the most firm which and the second second

Preface Abbreviations

.

page xi xiii

3

13

15

15

16

17

19

20

21

Part I	Introduction	en III Mannie Landiele III en

1 Philosophy of bioinorganic photochemistry

Part II Fundamentals

2	Light	and	matter
---	-------	-----	--------

- 2.1 Nature of light
- 2.2 Accessible light sources
- 2.3 Interaction between light and matter

3 Formation and properties of electronic excited states 3.1 Wave mechanics and quantum numbers 3.2 Electronic excitation

4	Phot	ophysical deactivation of electronic excited states	25
	4.1	Spontaneous deactivation	25
	4.2	Quenching	27
	4.3	Coordination and organometallic compounds	29
5	Kine	etics of the excited-state decay	35
6	Phot	tochemical reactions	41
	6.1	Photochemical reaction channels	42
	6.2	Intramolecular photoreactions	43
		6.2.1 Photodissociation and photoionization	44
		6.2.2 Photoisomerization	46
	6.3	Intermolecular photoreactions	47
	6.4	The coordination compound specificity	49

viii Contents

.

		6.4.1	Ligand field photochemistry	50
		6.4.2	Photochemistry from LC or LLCT states	51
		6.4.3	Inner-sphere charge transfer photochemistry	52
		6.4.4	Outer-sphere charge transfer photochemistry	55
	6.5	Photos	sensitized reactions	58
	6.6	Homo	geneous photocatalysis	63
7	Dhot	ochomic	try and photophysics of supromologular systems	
'	and	ochemis	mbling	77
	7 1	From	molecules through clusters to crystals	77
	7.1	Motall	is non-operticles: motols in the ophryconic state	70
	7.2	Formo	tion and door of the excited states of comiconductors	10
	1.5	7 2 1	Ontical avaitation of comison dustors	05
		7.3.1	Electrone and hele transing	0J 07
		7.2.2	Dedictive ve non redictive deserv	0/
		7.2.5	Surface and a sub-radiative decay	00
		7.3.4	Surface-molecule interaction: general description	90
		1.3.5	Heterogeneous photocatalysis	93
Par	t III	Natural	photoprocesses involving inorganic compounds	107
8	From	n interste	ellar space to planetary atmospheres	109
	8.1	Homo	geneous systems: from interstellar space to planetary	
		atmos	pheres and primitive soup models	110
	8.2	Hetero	ogeneous photochemistry in ice phases	121
9	Solar	r radiatio	on and terrestrial environment	127
	9.1	Solar 1	adiation	127
	9.2	Atmos	spheric photochemistry	129
	9.3	Photo	chemistry in the hydrosphere and soil	138
		9.3.1	Nitrate photochemistry	139
		9.3.2	Role of humic substances	140
		9.3.3	Photocatalysis by Fe ^{III} /Fe ^{II} complexes	141
		9.3.4	Photocatalysis by Cu ^{II} /Cu ^I complexes	144
		9.3.5	Photocatalysis by chromium compounds	145
	9.4	Photo	chemical self-cleaning in the environment	148
10	Hete	rogeneo	ous (photo)catalysis and biogenesis on Earth	157
	10.1	(Photo	o)catalysis on chalcogenide semiconductors	157
	10.2	Photo	catalytic nitrogen fixation	159
	10.3	Photo	catalytic carbon dioxide reduction	160
	10.4	'Fossil	s' of prebiotic catalysts: metal clusters in active centres	
		of met	alloenzymes	161
11	Foun	dation a	and evolution of photosynthesis	169
	11.1	Photos	synthetic structures	172
	11.2	Aerob	oic photosynthesis	174
		11.2.1	Photosystem II (PSII)	176
		11.2.2	Photosystem I (PSI)	177

Contents ix

	11.3	Light harvesting antennae (LHC)	177
		11.3.1 Chlorophyll	179
		11.3.2 Bacteriochlorophyll	179
	11.4	Electron transfer pathways in PSII and PSI	179
200	11.5	Oxygen-evolving complex (OEC)	183
		11.5.1 Inorganic species in OEC	185
Par	t IV	Photochemistry and photophysics in bioinspired systems:	
		studies and modelling	189
12	Phot	oenzymes	191
	12.1	Natural photoenzymes	191
	12.2	Modified natural proteins/enzymes	194
	12.3	Artificial photoenzymes	197
	12.4	Towards mimicking the photosynthetic processes	200
		12.4.1 Light harvesting antennae	200
		12.4.2 Charge-separation systems	202
		12.4.3 Biomimetic reaction centres	203
13	Phot	oinduced electron transfer in proteins	209
	13.1	Photochemical methodology	210
		13.1.1 Photoactive ruthenium complexes	210
		13.1.2 Metal-substituted haemoproteins	215
		13.1.3 Photoinduced ligand dissociation	216
	13.2	Biochemical applications	217
		13.2.1 Mechanisms of electron transfer	217
		13.2.2 Cross-linking of proteins	218
		13.2.3 Analyzing intermediates and testing new inhibitors	219
		13.2.4 Folding of proteins	219
14	Nucl	eic acid photocleavage and charge transport	227
	14.1	Mechanisms and strategies for advanced metallophotocleavers	227
		14.1.1 Ruthenium complexes	228
		14.1.2 Rhodium complexes	232
		14.1.3 Other metal complexes	234
		14.1.4 Di- and trinuclear complexes	237
	14.2	Photoinduced DNA-mediated charge transport	238
Par	tV]	Fowards applications	247
15	Light	t and biomatter	249
16	Fluo	rescent and chromogenic sensing and labelling	257
	16.1	Cations as targets in biochemical sensing	259
		16.1.1 Cations common in biological systems	262
		16.1.2 Fluorescent detection of toxic cations	268
	16.2	Fluorescent and chromogenic sensing of anions	270
		16.2.1 Common anions	270
		16.2.2 Toxic anions	274

x Contents

	16.3	Optical detection of neutral molecules	278
	16.4	Nanoparticles in biochemical sensing and labelling	283
17	Thera	apeutic strategies	293
	17.1	Photobiostimulation	295
	17.2	Photoactivation of drugs	297
	17.3	Photodynamic therapy	303
		17.3.1 Mechanisms of PDT and PTT	304
		17.3.2 Photosensitizers	305
		17.3.3 Inorganic photosensitizers	307
		17.3.4 Supporting role of metal ions in photodynamic therapy	312
		17.3.5 Combination of polypyrrolic photosensitizers and	
		metallopharmaceuticals	313
		17.3.6 Recent PDT development	313
	17.4	Nanomedical methods	316
18	Phote	odynamic inactivation of microorganisms	335
	18.1	Bacteria	337
	18.2	Viruses	338
	18.3	Fungi	340
	18.4	Parasites	340
	18.5	Perspectives	341
19	Phote	odelivery and phototargeting	345
20	Phote	otoxicity and photoprotection	353
	20.1	Chemical and physical photoprotection	353
- 11	20.2	Inorganic sunscreens	355
21	Phote	ocatalysis in environmental protection	359
	21.1	Development of homo- and heterogeneous methods	359
	21.2	Homogeneous photocatalysis	360
	21.3	Heterogeneous photocatalysis	363
		21.3.1 Water and air detoxification	363
		21.3.2 Photocatalytic CO ₂ reduction	365
		21.3.3 Other applications of photocatalysis	366
	21.4	New ideas in pollution abatement	367
		21.4.1 New emerging techniques	367
		21.4.2 Renewable energy resources	368

Index

377