Contents

Pı	refac	e	v
Li	st of	Algorithms	xiii
Li	st of	Figures	xv
1	Ma	thematical foundations	1
	1.1	Abstract algebras	1
		Groups	1
		Rings	3
	1.2	Metrics	4
	1.3	Vector spaces	5
		Linear operators	7
		Matrix algebra	7
		Square and invertible matrices	8
		Eigenvalues and eigenvectors	9
		Special matrices	10
	1.4	Probability and stochastic processes	12
		Sample spaces, events, measures and distributions	12
		Joint random variables: independence, conditionals, and	
		marginals	14
		Bayes' rule	16
		Expectation, generating functions and characteristic func-	
		tions	17
		Empirical distribution function and sample expectations	19
		Transforming random variables	20
		Multivariate Gaussian and other limiting distributions	21
		Stochastic processes	23
		Markov chains	25
	1.5	Data compression and information	
		theory	28
		The importance of the information map	31
		Mutual information and Kullback-Leibler (K-L)	
		divergence	32
	1.6	Graphs	34
		Special graphs	35
	1.7	Convexity	36
	1.8	Computational complexity	37
		Complexity order classes and big-O notation	38

		Tractable versus intractable problems:	
		NP-completeness	38
2			41
	2.1	Preliminaries Continue differentiable machine and mitigal	41
		Continuous differentiable problems and critical	41
		points Continuous optimization under equality constraints: La-	41
		grange multipliers	42
		Inequality constraints: duality and the Karush-Kuhn-Tucker	
		conditions	44
		Convergence and convergence rates for iterative	
		methods	45
		Non-differentiable continuous problems	46
		Discrete (combinatorial) optimization problems	47
	2.2	Analytical methods for continuous convex problems	48
		L_2 -norm objective functions	49
		Mixed L_2 - L_1 norm objective functions	50
	2.3	Numerical methods for continuous convex problems	51
		Iteratively reweighted least squares (IRLS)	51
		Gradient descent	53
		Adapting the step sizes: line search	54 56
		Newton's method Other gradient descent methods	58
	2.4	Non-differentiable continuous convex problems	59
	2.4	Linear programming	59
		Quadratic programming	60
		Subgradient methods	60
		Primal-dual interior-point methods	62
		Path-following methods	64
	2.5		65
	2.6	Heuristics for discrete (combinatorial) optimization	66
		Greedy search	67
		(Simple) tabu search	67
		Simulated annealing	68
		Random restarting	69
3	Rai	ndom sampling	71
	3.1	Generating (uniform) random numbers	71
	3.2		72
		Quantile function (inverse CDF) and inverse transform	
		sampling	72
		Random variable transformation methods	74
		Rejection sampling	74
		Adaptive rejection sampling (ARS) for log-concave densities	75
		Special methods for particular distributions	78
	3.3	Sampling from discrete distributions	79
		Inverse transform sampling by sequential search	79

		Rejection sampling for discrete variables	80
		Binary search inversion for (large) finite sample	
		spaces	81
	3.4	Sampling from general multivariate	01
		distributions	81
		Ancestral sampling	82
		Gibbs sampling	83
		Metropolis-Hastings	85
		Other MCMC methods	88
4	Sta	tistical modelling and inference	93
	4.1	Statistical models	93
		Parametric versus nonparametric models	93
		Bayesian and non-Bayesian models	94
	4.2	Optimal probability inferences	95
		Maximum likelihood and minimum K-L divergence	95
		Loss functions and empirical risk estimation	98
		Maximum a-posteriori and regularization	99
		Regularization, model complexity and data compression	101
		Cross-validation and regularization	105
		The bootstrap	107
	4.3	Bayesian inference	108
	4.4	Distributions associated with metrics and norms	110
		Least squares	111
		Least L_q -norms	111
		Covariance, weighted norms and	
		Mahalanobis distance	112
	4.5	The exponential family (EF)	115
		Maximum entropy distributions	115
		Sufficient statistics and canonical EFs	116
		Conjugate priors	118
		Prior and posterior predictive EFs	122
		Conjugate EF prior mixtures	123
	4.6	Distributions defined through quantiles	124
	4.7	Densities associated with piecewise linear loss functions	126
	4.8	Nonparametric density estimation	129
		Inference by sampling	130
	4.0	MCMC inference	130
		Assessing convergence in MCMC methods	130
		Tibbebing convergence in income	100
5	Pro	babilistic graphical models	133
	5.1	Statistical modelling with PGMs	133
	5.2	Exploring conditional	
		independence in PGMs	136
		Hidden versus observed variables	136
		Directed connection and separation	137
		The Markov blanket of a node	138
	5.3	Inference on PGMs	139

		Exact inference	140
		Approximate inference	143
0	Ct-		140
6		tistical machine learning	149
	6.1	Feature and kernel functions	149
	6.2	Mixture modelling	150
		Gibbs sampling for the mixture model	150
	6.2	E-M for mixture models	152
	6.3	Classification Overdretic and linear discriminant analysis (ODA and LD)	154
		Quadratic and linear discriminant analysis (QDA and LDA	
		Logistic regression Support vector machines (SVM)	156
		Classification loss functions and misclassification	158
		count	161
		Which classifier to choose?	161
	6.4	Regression	162
	0.4	Linear regression	162
		Bayesian and regularized linear regression	163
		Linear-in parameters regression	164
		Generalized linear models (GLMs)	165
		Nonparametric, nonlinear regression	167
		Variable selection	169
	6.5	Clustering	171
	0.0	K-means and variants	171
		Soft K -means, mean shift and variants	174
		Semi-supervised clustering and classification	176
		Choosing the number of clusters	177
		Other clustering methods	178
	6.6	Dimensionality reduction	178
	0.0	Principal components analysis (PCA)	179
		Probabilistic PCA (PPCA)	182
		Nonlinear dimensionality reduction	184
		2 TOITHICAL CHINCHSTOTICATON TCCCCOOL	104
7	Lin	ear-Gaussian systems and signal processing	187
	7.1	Preliminaries	187
		Delta signals and related functions	187
		Complex numbers, the unit root and complex exponentia	ls 189
		Marginals and conditionals of linear-Gaussian	
		models	190
	7.2	Linear, time-invariant (LTI) systems	191
		Convolution and impulse response	191
		The discrete-time Fourier transform (DTFT)	192
		Finite-length, periodic signals: the discrete Fourier trans-	
		form (DFT)	198
		Continuous-time LTI systems	201
		Heisenberg uncertainty	203
		Gibb's phenomena	205
		Transfer function analysis of discrete-time LTI systems	206

	Fast Fourier transforms (FFT)	208
7.3	LTI signal processing	212
	Rational filter design: FIR, IIR filtering	212
	Digital filter recipes	220
	Fourier filtering of very long signals	222
	Kernel regression as discrete convolution	224
7.4	Exploiting statistical stability for linear-Gaussian DSP	226
	Discrete-time Gaussian processes (GPs) and DSP	226
	Nonparametric power spectral density (PSD) estimation	231
	Parametric PSD estimation	236
	Subspace analysis: using PCA in DSP	238
7.5	The Kalman filter (KF)	242
	Junction tree algorithm (JT) for KF computations	243
	Forward filtering	244
	Backward smoothing	246
	Incomplete data likelihood	247
	Viterbi decoding	247
	Baum-Welch parameter estimation	249
	Kalman filtering as signal subspace analysis	251
7.6	Time-varying linear systems	252
	Short-time Fourier transform (STFT) and perfect recon-	
	struction	253
	Continuous-time wavelet transforms (CWT)	255
	Discretization and the discrete wavelet transform (DWT)	257
	Wavelet design	261
	Applications of the DWT	262
Disc	crete signals: sampling, quantization and coding	265
8.1	Discrete-time sampling	266
	Bandlimited sampling	267
	Uniform bandlimited sampling: Shannon-Whittaker in-	
	terpolation	267
	Generalized uniform sampling	270
8.2	Quantization	273
	Rate-distortion theory	275
	Lloyd-Max and entropy-constrained quantizer	
	design	278
	Statistical quantization and dithering	282
	Vector quantization	286
8.3	Lossy signal compression	288
	Audio companding	288
	Linear predictive coding (LPC)	289
	Transform coding	291
8.4	Compressive sensing (CS)	293
	Sparsity and incoherence	294
	Exact reconstruction by convex optimization	295
	Compressive sensing in practice	296

9	Non	linear and non-Gaussian signal processing	299
	9.1	Running window filters	299
		Maximum likelihood filters	300
		Change point detection	301
	9.2	Recursive filtering	302
	9.3	Global nonlinear filtering	302
	9.4	Hidden Markov models (HMMs)	304
		Junction tree (JT) for efficient HMM computations	305
		Viterbi decoding	306
		Baum-Welch parameter estimation	306
		Model evaluation and structured data classification	309
		Viterbi parameter estimation	309
		Avoiding numerical underflow in message passing	310
	9.5	Homomorphic signal processing	311
10	Non	parametric Bayesian machine learning and signal pr	0-
	cess		313
	10.1	Preliminaries	313
		Exchangeability and de Finetti's theorem	314
		Representations of stochastic processes	316
		Partitions and equivalence classes	317
	10.2	Gaussian processes (GP)	318
		From basis regression to kernel regression	318
		Distributions over function spaces: GPs	319
		Bayesian GP kernel regression	321
		GP regression and Wiener filtering	325
		Other GP-related topics	326
	10.3	Dirichlet processes (DP)	327
		The Dirichlet distribution: canonical prior for the cate-	
		gorical distribution	328
		Defining the Dirichlet and related processes	331
		Infinite mixture models (DPMMs)	334
		Can DP-based models actually infer the number of com-	001
		ponents?	343
Bi	Bibliography		
In	dex		353