Major Classes of Natural Product Scaffolds and Enzymatic Biosynthetic Machinery 1

3.1 Active CoA, Malored-GoA and Millonge-Series Samistic Tyleocies, evenilating Blocks

The information community and type-thrown interplated in a

Reference etalemente a la print Service Cent a Tratachante de presta.

	1.1 Introdu	action	3
	1.2 Primar	y Metabolites vs. Secondary Metabolites	6
		Aajor Classes of Natural Products	9
	-	philes and Electrophiles in Natural Product Biosynthesis	13
		Enzyme Classes that Operate in Natural Product Biosynthetic Pathways	14
		ne-independent and Genome-dependent Discovery of Natural Products	17
		ach of this Volume	19
	References		20
2	The Chemi	ical Logic for Major Reaction Types	23
	2.1 Two Cl	asses of Molecules that Drive Major Reaction Types in Both Primary and	
	Second	lary Metabolisms	23
	2.2 Therm	odynamically Activated but Kinetically Stable Metabolites that Drive	
	Biosyn	thetic Equilibria	24
		ATP and NTP Congeners	28
		Adenosine Phosphosulfate and Phosphoadenosine Phosphosulfate	29
		Acetyl-S-coenzyme and Related Acyl Thioesters	29
		NADH as Hydride Transfer Agent: Two Electrons at a Time	31
		S-Adenosylmethionine	32
	2.2.6	Carbamoyl Phosphate	32
	2.2.7	UDP-Glucose	34
		Isopentenyl Pyrophosphate	37
		Phosphoenolpyruvate (PEP) as a Trapped Carbanion Equivalent	38
	2.2.10	A Diverse Range of Thermodynamically Activated, Kinetically Stable	
		Chemical Groups Power Metabolism	39
		Molecular Oxygen	40
		4.4.2 Enndormannide: Protein Negimenes gas Peblorit, Edministration in antagen and the	
	5.3.4	annessa Goadepund, Sterreissister, Hansersterreissen an in ann ann ann ann ann ann ann	
		osynthesis: Chemical Logic and Enzymatic Machinery, 2nd Edition Valsh and Yi Tang	

© Christopher T. Walsh and Yi Tang 2023 Published by the Royal Society of Chemistry, www.rsc.org

xvii

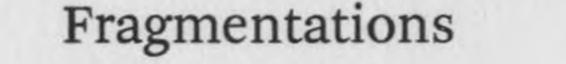
42

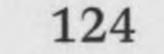
44

45

xviii

2.3	3 Coenzyme Forms of B Vitamins as a Convergent Set of Metabo	olites Enabling
	Chemistry	


2.4 Overview: Chemical Logic Embodied in the Two Sets of Metabolites and Coenzymes References


Polyketide Natural Products 3

3.1	Introduction	49
3.2	Polyketides Have Diverse Scaffolds and Therapeutic Utilities	51
3.3	Acetyl-CoA, Malonyl-CoA and Malonyl-S-Acyl Carrier Proteins as Building Blocks	
	for Fatty Acids and Polyketides	56
3.4	The Logic and Enzymatic Machinery of Fatty Acid Synthesis is Adapted by	

49

	Polyketide Synthases	59
	3.4.1 Fatty Acid Synthases (FASs)	59
	3.4.2 Polyketide Synthases (PKSs)	62
	3.4.3 Alternate Acyl-CoA Substrates for PKS	64
	3.4.4 Organization of Multiprotein Assemblages	64
	3.4.5 PKS Chain Termination Modes	65
	3.5 Biosynthesis of Major Polyketide Structural Classes	69
	3.5.1 Oxytetracycline Biosynthesis: Aromatic Polyketides that Initiate Cyclization	
	at $C_7 - C_{12}$ or $C_9 - C_{14}$	69
	3.5.2 Fungal Aromatic Polyketides: Cyclizations that Start at C_4-C_9 or C_6-C_{11}	71
	3.5.3 Type II Reducing PKSs Release Polyenes as Nascent Products	72
	3.5.4 Polyketide Macrolactones: Type I Assembly-line Logic and Machinery	73
	3.5.5 Polyketides Formed from Concerted Pericyclic Reactions	79
	3.5.6 A Stepwise Cyclization of Polyketide: Ikarugamycin	81
	3.5.7 Polyene Subclass of Polyketides	82
	3.5.8 Polyketide to Polyether Metabolites	86
	3.6 Convergence of Polyketide and Other Natural Product Pathways	91
	3.7 Post-assembly-line Tailoring Enzymes	92
	References	96
4	Peptide Natural Products I: RiPPs	101
	4.1 RiPPs vs. NRPs	101
	4.2 RiPPs: Scope of Posttranslational Modifications: One-vs. Two-electron Reaction	
	Manifolds	104
	4.3 RiPP Biosynthetic Gene Organizations	106
	4.4 Lanthipeptides: RiPPs Containing Crosslinking β-Thioethers	107
	4.4.1 Lysine–Dha Crosslinks	108
	4.4.2 Landornamide: Protein Arginases vs. Protein Deiminase	109
	4.4.3 Phomopsins and Ustiloxins	112
	4.5 RiPPs with Olefins and Oxazole and Thiazole Heterocycles	114
	4.5.1 Goadsporin, Microcin B17, Plantazolocin	114
	4.5.2 Patellamides A and C	116
	4.5.3 Pyridines, Thiazoles, Oxazoles	117
	4.6 Lasso Peptides: Nature's Rotaxanes	120
	4.7 One-electron Reaction Manifolds in RiPP Generation from S-Adenosylmethionine	Publia

.

	4.7.1 Sactipeptides	125
	4.7.2 Homolytic Coupling of Lys-Trp in Streptide	126
	4.7.3 Six-member Aliphatic Ethers from Threonine–Glutamate Crosslinking	127
	4.7.4 Polytheonamides	128
	4.7.5 RiPP α-Ketoamides from Splicing Out a Tyramine Moiety	133
	4.7.6 Bottromycin: Multiple PTMs	135
	4.8 Other RiPP Categories	137
	4.8.1 Cittilins and Protein Cyclophanes	137
	4.8.2 Microviridin	137
	4.8.3 Amanitin and Phalloidin	140
	4.8.4 Self-N-methylation of Peptide Bonds in Borosin RiPPs	140
	4.9 RiPPs from Plants	143
	4.10 Summary	143
	4.10.1 Multiple Macrocyclization Strategies	145
	4.10.2 Rigidification by Morphing Peptide Backbone into Heterocycles	146
	4.10.3 Embedding Heterocycles in Macrocycles	146
	4.10.4 Rotaxane Topology Implementation	146
	4.10.5 Auguries of Novel Peptide Chemical Biology from the Radical SAM	
	Universe	147
	References	147
	5.7.3 Pleucomathin / Cathodalol Mathodalol 20 anilianto de la destructura de la destructura de la destructura de	199
5	Peptide Natural Products II: Nonribosomal Peptides	151
	5.1 NRPS Assembly-line Strategies	151
	5.1 NRPS Assembly-line Strategies5.2 Genome Mining and Bioinformatic Analyses	151
	5.3 Constituents of NRPS Assembly Lines and the Logic of Nonribosomal Peptide	152
	Constituents of NKPS Assembly Lines and the Logic of Nonhoosomal Peptide Chain Growth	153
	5.3.1 Nonproteinogenic Amino Acid Building Blocks	153
	5.3.2 Phosphopantetheinyl Arms for Tethering Growing Peptidyl Thioester	133
	Chains	156
		159
	5.3.3 NRPS Domains and Modules 5.4 Representative NRPS Assembly Lines	160
	5.4.1 The ACV Synthetase Assembly Line	160
	5.4.2 The Enterobactin Synthetase Assembly Line	164
	5.4.3 Obafluorin an Amino β -lactone from a Two-module NRPS	167
	5.4.4 Azabicyclene Scaffolds from <i>Pseudomonas aeruginosa</i>	167
	5.4.5 Vancomycin and Teicoplanin Glycopeptide Antibiotics	170
	5.4.6 Echinocandins: Antifungal Cyclic Hexapeptides	172
	5.4.7 Syringomycins and Syringopeptins: The Outer Limit of NRPs	174
	5.4.8 Structural Biology of NRPS Domains and Modules	178
	5.5 Hybrid Nonribosomal Peptide-polyketide Assembly Lines	180
	5.5.1 Statine, Isostatine and Vinyl-arginine Revisited	182
	5.5.2 α-Cyclopiazonic Acid: a Dieckmann Condensation in Mid-pathway	183
	5.5.3 Bleomycin and Yersiniabactin: Hybrid Assembly Lines that are Mostly NRPS	
	5.5.4 Epothilone D and Rapamycin: Hybrid NRP-PK Scaffolds where the PK Units	
	Dominate	185
	5.5.5 Colibactin: a Genotoxic Human Gut Hybrid Scaffold with a Reactive	
	Cyclopropane	187
	5.6 Tailoring Enzymes and Morphed Scaffolds: RiPPs vs. NRPs vs. NRP-PK Hybrids	189
	References	190

.

References

6 Is	oprenoids/Terpenes	193
e	.1 Isoprene-based Scaffolds Comprise the Most Abundant Class of Natural	
	Products	193
e	5.2 Δ^2 - and Δ^3 -Isopentenyl Diphosphates are the Biological Isoprenyl Building	
	Blocks for Head-to-tail Alkylative Chain Elongations	193
e	.3 Long-chain Prenyl Scaffolds	196
e	.4 Two Routes to the IPP Isomers: Classical and Nonclassical Pathways	197
e	5.5 Self-condensation of Two Δ^2 -IPPs to the Chrysanthemyl Cyclopropyl	
	Framework	202
6	.6 Cation-driven Scaffold Rearrangements and Quenching	202
	6.6.1 Monoterpenes: Geranyl-PP to α-terpinyl Cation and Its Partitioning to	
	Products	202
	6.6.2 Sesquiterpenes: Six Regiospecific Cyclizations from C15 Farnesyl-PP	204
	6.6.3 How Good Are Terpene Synthases at Directing Flux of the Sequential	
	Series of Cations in Their Active Sites?	207
	6.6.4 Abscisic Acid	209
e	.7 Diterpene Cyclization and Scaffold Complexity Generation	210
	6.7.1 Geranylgeranyl-PP to ent-kaurene	210
	6.7.2 Geranylgeranyl-PP to Taxadiene	212
	6.7.3 Pleuromutilin	216
	6.7.4 Momilactone B and Forskolin	217
6	.8 Head-to-head vs. Head-to-tail Alkylative Couplings: C30 and C40 Hydrocarbons	219
	.9 Squalene-2,3-oxide and Cyclized Triterpenes	222
	6.9.1 Formation of Squalene-2,3-oxide	222
	6.9.2 Squalene Cyclases: Squalene to Hopene Framework	224
	6.9.3 Oxidosqualene to Lanosterol, Cycloartenol, β-amyrin	224
	6.9.4 Structural Biology Insights	227
	6.9.5 Promiscuity of Oxidosqualene Cyclases: How Good Are the Oxidocyclases	
	at Directing Flux Down One Reaction Manifold?	228
	6.9.6 Lanosterol to Cholesterol and Beyond: A Bevy of Oxygenases	231
	6.9.7 Regiospecific Furanosteroids	234
6.	10 Phytoene to Carotenes and Vitamin A	241
	11 Reaction of Isoprenes with Other Natural Product Classes	244
	6.11.1 Meroterpenoids	245
	6.11.2 Hyperforin is a Tetraprenylated Polyketide	250
	6.11.3 Tetrahydrocannabinol	251
	6.11.4 Paxilline	253
	6.11.5 Merosterolic Acid	253
	6.11.6 Xenovulene	255
6.	12 Geranyl-PP to Secologanin: Entryway to Strictosidine and a Thousand	100
	Alkaloids	257
R	eferences	260
	kaloids I	265
	1 Introduction	265
-	2.2 Amino Acid Building Blocks	267
	s.e. que du de la presente en de la completad Sean of deprinter a ver la Pere Pere Sinter de la printe de Sec	

	7.3	Common Enzymatic Reactions in Alkaloid Biosynthetic Pathways	268
		7.3.1 Reactions Involving Amino Acid Building Blocks	268
		7.3.2 Ornithine as Building Block for Cocaine and Retronecine	270
		7.3.3 Lysine to Pelletierine and Pseudopelletierine and Sparteine	272
		7.3.4 Lysine to the 6,5-Indolizidine Bicyclic Framework	273
	7.4	Three Aromatic Amino Acids as Alkaloid Building Blocks	274
		7.4.1 Phenylalanine to Hyoscyamine to Scopolamine: Radical	
		Rearrangement	274
		7.4.2 Tyrosine is the Entry Point for Several Complex Alkaloid Scaffolds	279
		7.4.3 Tyrosine to S-reticuline to Berberine	286
		7.4.4 Tyrosine to <i>R</i> -reticuline to Morphine	288
	7.5	Phenylalanine and Tyrosine Scaffolds Morphed to the 6-7-7 Tricyclic	
		Framework of Colchicine	288
	7.6	Tryptophan as a Building Block to Alkaloids	294
		7.6.1 Tryptophan to Harmine: β-Carbolines	294
		7.6.2 Tryptophan to Strictosidine and Beyond: Ajmalicine, Camptothecin,	
		Quinine	294
		7.6.3 Tryptophan to Lysergic Acid and Ergotamine	299
	7.7	Tryptophan to Indolocarbazole Alkaloids	302
		7.7.1 Rebeccamycin and Staurosporine	302
		7.7.2 Prenylated Carbazole Metabolites	306
	7.8	Tryptophan Oxidative Dimerization to Terrequinone	306
		Additional Alkaloids: Steroidal Alkaloids	310
	7.10	Summary	310
	Refe	rences	313
8	Puri	ne- and Pyrimidine-derived Natural Products	317
	~ ~	9.6.3 Seminte to Figerine and Cardelin in Property Interview Interview Indernie Inderniew	
		Introduction	317
		Pairing of Specific Purines and Pyrimidines in RNA and DNA	318
		Remnants of an RNA World?	319
		Canonical Biosynthetic Routes to Purines and Pyrimidines	321
		Caffeine, Theobromine, and Theophylline	324
		Plant Isopentenyl Adenine Cytokinins	328
	8.7	Maturation of Ribonucleotides to Modified Purine and Pyrimidine Natural	
		Products	330
		8.7.1 Heterocycle Modification	330
		8.7.2 Sugar Modifications	333
		8.7.3 Cyclopentanetriol "Carba" Analogs of the D-Ribose Moiety in	
		Neplanocin A and Aristeromycin	337
	8.8	Peptidyl Nucleosides	337
		8.8.1 Switch from Ribose to Hexose Sugars in Nucleotide Analogs	337
		8.8.2 Modification of 5'-Substituents	342
	8.9	Natural C-glycosides	353
		8.9.1 Pseudouridimycin: Pseudouridine Formation Logic	353
		8.9.2 Pyrazofurin and Formycin A	355
		Summary	357
	Refe	rences	357

1

9	Pheny	lpropan	oid Natural Product Biosynthesis	361
	9.1 In	troducti		361
	9.2 Ph	enylalar	nine to para-Coumaryl-CoA	362
			nylalanine Ammonia Lyase: Phenylalanine to Cinnamate	362
			namate Hydroxylase: Cinnamate to para-Coumarate	367
			-Coumaryl-CoA Ligase: para-Coumarate to para-Coumaryl-CoA	368
			ol, Ligan, and Lignin Biosynthesis	368
		-	-Coumaryl-CoA to Three Monolignols	368
		-	erization of Monolignols to Lignans	368
		3.3 Pino	presinol to Podophyllotoxin and Etoposide: Oxygenase Scaffold	370
	0.2		in Formation and Function: Peroxidases and Laccases	380
		0		
	-			382
		• -	e III PKS with One Malonyl-CoA Chain Extension	383
	9.4		ene Synthases vs. Chalcone Synthases: Rerouting Substrates to	200
	OF Ch		erent Products after Three Chain Extensions	386
			to Flavanones and Beyond	387
			lcone Isomerases Convert Chalcones to Flavanones	387
			rdroflavonol to Anthocyanidins loones to Aurones	390
				390
			anomes to isomavones to i nytoareans	394
			avones to Rotenone	395
			0	397
			e-derived Phenylpropanoids	397
			namate to Phenylpropenes and Phenylpropenals	397
			namate to Coumarins	399
			late to Piperine and Capsaicin	400
		-	Look at a Different Phenylpropanoid Route: Tyrosine as Precursor	
		-	uinones and Tocopherols	404
		mmary		404
	Refere	nces	8.5 Catherne. Theoinmine and Theoremyline	408
10		·		
10	AIKalo	1 as 11: 11	ndole Terpenes	413
	10.1	Introd		112
			outes to Tricyclic Scaffolds from Tryptophan: β-Carbolines and	413
	10.2		oindoles	111
	10.2			414
	10.5		a Diketopiperazine NRPS Assembly-line Products as Substrates for selective Prenylations	416
	10.4	Seven	Nucleophilic Sites on the Indole Ring: a Cornucopia of Possibilities	418
	10.5	Fungal	l Generation of Tryptophan-derived Alkaloids from DKP	423
		10.5.1	Tryptophan to Fumitremorgin C to Fumitremorgin B to	
			Verruculogen to Fumitremorgin A	423
		10.5.2	Fumitremorgins to Spirotryprostatin Framework	426
			Brevianamide F to Notoamide D	429
		10.5.4	Brevianamide F to the Bicyclo[2.2.2]diazooctane Cores in	
			Brevianamides A and B	429

References

.

. 1

	10.6	Bacter	ial Generation of Pentacyclic Indolecarbazoles	432
			Alkaloids	432
			Strictosidine is a Central Tripartite Vinca Alkaloid Intermediate Strictosidine Glycosidase Unleashes the Reactivity of Strictosidine	434
		10.7.2	Aglycone	436
		10.7.3	Strictosidine Aglycone to Stemmadenine	436
			Stemmadenine to Catharanthine and Tabersonine	436
			Tabersonine to Vindoline	438
			Coupling of Vindoline and Catharanthine to Vinblastine and Vincristine	438
	10.8	Comm	unesins: Short Pathways to Scaffold Complexity	440
			phan to Cyclopiazonic Acid	442
		Summ		445
	Refere			446
		POLT		660
11	Natura	l Produ	ct Oligosaccharides and Glycosides	449
	11 1 Tr	ntroduc	tion	449
			is the Predominant Hexose in Primary Metabolism	455
			lucose-6-phosphate and Glucose-1-phosphate	456
			lucose-1-phosphate to UDP-glucose	458
			lycosyltransferases Use NDP-hexoses to Transfer Glycosyl Units to	400
	1.		osubstrate Nucleophiles	460
	1.		lycosyltransferases in Plants	462
			DP-hexoses vs. Phosphoribosyl Diphosphate	465
			of Glycosylated Natural Products	465
			eroidal and Phenylpropanoid Glycosides	465
			icrobial Natural Product Glycosides	466
			mical Logic for Converting NDP-glucose to NDP-modified Hexoses	470
			ormation of 4-keto-6-deoxyglucose	470
			ormation of Deoxysugars Found in Various NPs	474
			atural Products with Amino- and Thiosugars	479
			of Glycosyltransferases and Glycosidases: Cyanogenic Glycosides and	475
		lucosin		482
			yanogenic Glucosides	483
			lucosinolate Biosynthesis	483
			ycosides: Oligosaccharides Without an Aglycone	488
			anamycin and Apramycin	488
			ycosylated Natural Products	491
			reptomycin	491
			loenomycins	493
		ummar		493
	Refere		13.3.3 Incrumolecular Caprare of fire Aminolyntyryl Side Chain on	498
	Refere	nees		490
12	Oxyge	nases, T	Thwarted Oxygenases, and Oxygen-dependent Halogenases	503
	12.1	Introd	uction	503
			ermodynamic Activation, and Kinetic Stability	504
			ernioù y name neenvaeron, ana kineene beabhieg	

		12.2.1 O	ne-electron Transfers for O ₂ Reductive Activation	504
			our One-electron Steps in the Redox Traverse from O_2 to 2 H_2O	504
			norganic and Organic Redox Cofactors that Mediate One-electron	161
			ransfers to O ₂	506
	12.3	Oxygenas		507
			lavoenzymes: Reductive and Reoxidative Half-reactions	507
		-	c Redox-active Metalloenzyme Oxygenases: Two Copper Enzymes	513
	12.5		ed Oxygenases: Three Flavors of the Biological Big Gun Oxygenases	518
			ources and Routes for Electron Input into Fe ^{III} –O ₂ and Fe ^{III} –O ₂	500
			complexes	520
			cope of Cytochrome P450 Oxygenations. Alcohols, Phenols, Epoxides,	502
			actones, Sulfur, and Nitrogen Oxidations	523
			In the second of	525 536
			0 10	
			Ionheme Iron (NHI) Oxygenases	539
			aurine vs. Phenylalanine Hydroxylase Logic	541
			cope of NHI Oxygenations: Monooxygenases vs. Dioxygenases	543
			Di-iron Oxygenases	547
			Iydroxylations Completed Following Scaffold Radical-based	EEO
	10.0		learrangements	550
	12.0		d Oxygenases	553
	107		Definition of Thwarted Oxygenases	553
	12.7		dependent Halogenases	572
	10.0		Oxygen-dependent Halogenases	573
	12.8		Oxygenases	585
	10.0		Oxygen Diversion of Enzyme-generated Substrate Carbanions	585
	12.9		l Phosphate: Two-electron Chemistry vs. One-electron Chemistry	589
			Oxygen-independent One-electron PLP Reaction Manifolds	589
			Dxygen-dependent Diversions of Aminoacyl-PLP Carbanionic ntermediates	504
	10.10			594 599
			v of Reductive Oxygen Chemical Biology	
	Refer	ences		600
13	S-Ader	osylmeth	ionine	607
			11.5.1 Cyanogenia Glucosides	
	13.1 In	ntroductio	on to Two Modes of Reactivity of S-Adenosylmethionine	607
	13.2 S	Adenosyl	methionine Synthetase	609
	13.3 T	wo-electro	on Reaction Manifolds for S-Adenosylmethionine	609
	1	3.3.1 Mec	hanism for Carbanion Generation in DNA Cytidine	
		Met	hyltransferases	614
	1	3.3.2 All T	Three Substituents on the Sulfonium in SAM are Activated for	
		Elec	etrophilic Transfer	614
	1	3.3.3 Intra	amolecular Capture of the Aminobutyryl Side Chain of SAM Yields	
			-, and 5-Member Heterocycles	617
	1	3.3.4 S-Ad	lenosylmethionine Ylide and Carboxymethyl SAM	620
	13.4 C	ne-electro	on Reaction Pathways from SAM	623
	1	3.4.1 Feat	tures of the Radical SAM Enzyme Family	623
			nolysis of the C–S ⁺ Bonds of SAM in Radical SAM Enzymes	625
			eoxyadenosyl Radicals	627

1

13 1 1 Covalent Organoiron Adducts, Obligate or Conditional Intermediates

13.4.4	Covalent	Organonion Auduc	is. Obligate of	Conuntional	internieulates

	On-pathway?	627
	13.4.5 Multiple Ways to Classify Radical SAM Enzymes	629
		630
		637
		642
		646
		648
		650
		653
		654
14	Pericyclases in Natural Product Biosynthesis	659
	111 Deriovalia Desetions	650
		659
		660
		662
	0	662
		664
		664
	14.3.4 Proposed 1,5-prototropic Shift During Isochorismate Lyase	
		664
	J 1 3	667
		667
		670
		673
		676
	14.5.3 AbyU Builds a Spiro-tetronate Ring System on the Way to	
		676
	14.5.4 Decalin Formation on the Way to the Anti-HIV Fungal Metabolite	
		677
	1	680
		681
	14.6.1 LepI: Competition Between Diels-Alder and Hetero-Diels-Alder/	
		685
	14.6.2 Enzymatic Partitioning of an Intermediate Between Hetero-Diels-Alder	
		687
	14.6.3 An Aza-Diels-Alder Cyclization to the Trithiazolyl Dihydropyridine	
	J 1	689
	14.7 Proposed Competing Diels-Alder Cyclizations to Form the Alkaloids	
		695
		696
	14.9 Contemporary Studies on Electrocyclic Reactions in Biologic Metabolites	696
	14.10 Overview	701
	References	701
15	Natural Product Isolation and Characterization: Gene-independent Approaches	707
	15.1 Isolation Protocols for Natural Products	707
	15.1.1 Historical Isolation Protocols	707
	15.2 Contemporary Isolation of Natural Products	709

	15.2.1 From Historical Single-crystal X-ray to Current Microcrystal Electron	
	Diffraction to Determine Natural Product Structures	713
	15.2.2 Morphine Isolation as a Representative Alkaloid Isolation	717
	15.2.3 Vinblastine and Vincristine from Catharanthus roseus, Antitumor	
	Drugs from the Madagascar Periwinkle	718
	15.2.4 β-Lactam Antibiotic Fermentations	720
5.3	Expanding the Inventory of Natural Products	721
	15.3.1 Marine Actinomycetes	721
	15.3.2 Metabolites from Marine Niches	723
	15.3.3 Endophytic Fungi	726
	15.3.4 Insect-Fungi-Bacteria Symbioses	727
	15.3.5 Bacteria from Nematode Microbiomes	727
	15.3.6 Intersection of More than Two Biosynthetic Pathways	730

15.3.7 Culturing the Unculturable 15.4 One Strain Many Compounds References

16 Natural Products in the Post-genomic Era

16.1 Introduction

16.2 Bioinformatic and Computational Predictions of Biosynthetic Gene Clusters

- 16.3 Bioinformatics Dedicated to Biosynthetic Gene Clusters for Natural Products
- 16.4 Genome Mining: Turning Natural Products Research on Its Head 16.4.1 What to Look For
- 16.5 Strategies to Enhance or Express Silent Gene Clusters in Producing Vs. Heterologous Hosts

16.5.1 Identification of a 12-gene Biosynthetic Cluster for Avenacin from Avena strigosa Root Tips Using Transient Transformation of Nicotiana benthamiana

16.5.2 Genome Mining for the Domoic Acid Genes in a Diatom 16.5.3 De-orphaning a Fungal Metabolic Pathway: Aspterric Acid 741

741

743

746

747

747

751

753

756

756

	16.5.4 Genome Mining of New Scaffolds from Fungi	759
	16.5.5 Bioinformatics-based Natural Product Prospecting in Bacterial	
	Genomes	761
	16.6 Pathway Engineering for Metabolite Overproduction and/or Diversification	763
	16.6.1 Overproduction	763
	16.6.2 Tropane Phytochemicals from Yeast Heterologous Pathway Expression	764
	0 0	764
	16.6.4 Mixing and Matching Core Enzymes and Alternative Tailoring Enzymes	768
	References	773
Sub	oject Index	776
	15.1 Inolation Protodols for Natural Products	