Contents

Letter from the Author XV Preface XVi

Chapter 1 Introduction to Genetics 1

Albinism in the Hopis 1

1.1 Genetics Is Important to Us Individually, to Society, and to the Study of Biology 2

The Role of Genetics in Biology 4
Genetic Diversity and Evolution 4
Divisions of Genetics 5
Model Genetic Organisms 5

1.2 Humans Have Been Using Genetics for Thousands of Years 7

The Early Use and Understanding of Heredity 7
The Rise of the Science of Genetics 9
The Future of Genetics 10

1.3 A Few Fundamental Concepts Are Important for the Start of Our Journey into Genetics 11

Chapter 2 Chromosomes and Cellular Reproduction 17

The Blind Men's Riddle 17

- 2.1 Prokaryotic and Eukaryotic Cells Differ in a Number of Genetic Characteristics 18
- 2.2 Cell Reproduction Requires the Copying of the Genetic Material, Separation of the Copies, and Cell Division 20

Prokaryotic Cell Reproduction 20
Eukaryotic Cell Reproduction 20
The Cell Cycle and Mitosis 23
Genetic Consequences of the Cell Cycle 26

CONNECTING CONCEPTS Counting Chromosomes and DNA Molecules 27

2.3 Sexual Reproduction Produces Genetic Variation Through the Process of Meiosis 27

Meiosis 28 Sources of Genetic Variation in Meiosis 31

CONNECTING CONCEPTS Mitosis and Meiosis Compared 33

The Separation of Sister Chromatids and Homologous Chromosomes 33 Meiosis in the Life Cycles of Animals and Plants 35

Chapter 3 Basic Principles of Heredity 45

The Genetics of Red Hair 45

3.1 Gregor Mendel Discovered the Basic Principles of Heredity 46

> Mendel's Success 47 Genetic Terminology 48

3.2 Monohybrid Crosses Reveal the Principle of Segregation and the Concept of Dominance 49

What Monohybrid Crosses Reveal 50

CONNECTING CONCEPTS Relating Genetic Crosses to Meiosis 52

The Molecular Nature of Alleles 53

Predicting the Outcomes of Genetic Crosses 53
The Testcross 57
Genetic Symbols 58

CONNECTING CONCEPTS Ratios in Simple Crosses 58

3.3 Dihybrid Crosses Reveal the Principle of Independent Assortment 59

Dihybrid Crosses 59
The Principle of Independent Assortment 59
Relating the Principle of Independent Assortment to
Meiosis 60
Applying Probability and the Branch Diagram to
Dihybrid Crosses 61
The Dihybrid Testcross 62

3.4 Observed Ratios of Progeny May Deviate from Expected Ratios by Chance 64

The Goodness-of-Fit Chi-Square Test 64

Chapter 4 Sex Determination and Sex-Linked Characteristics 77

The Strange Case of Platypus Sex 77

4.1 Sex Is Determined by a Number of Different Mechanisms 78

Chromosomal Sex-Determining Systems 79
Genic Sex Determination 81
Environmental Sex Determination 81
Sex Determination in *Drosophila melanogaster* 82
Sex Determination in Humans 83

4.2 Sex-Linked Characteristics Are Determined by Genes on the Sex Chromosomes 85

X-Linked White Eyes in *Drosophila* 85
Nondisjunction and the Chromosome Theory of Inheritance 86
X-Linked Color Blindness in Humans 88
Symbols for X-Linked Genes 89
Z-Linked Characteristics 89
Y-Linked Characteristics 90

CONNECTING CONCEPTS Recognizing Sex-Linked Inheritance 92

4.3 Dosage Compensation Equalizes the Amount of Protein Produced by X-Linked and Autosomal Genes in Some Animals 92
Lyon Hypothesis 93
Mechanism of Random X Inactivation 94

Chapter 5 Extensions and Modifications of Basic Principles 103

The Odd Genetics of Left-Handed Snails 103

5.1 Additional Factors at a Single Locus Can
Affect the Results of Genetic Crosses 104
Types of Dominance 104
Penetrance and Expressivity 107
Lethal Alleles 107
Multiple Alleles 108

5.2 Gene Interaction Takes Place When Genes at Multiple Loci Determine a Single Phenotype 110

Gene Interaction That Produces Novel
Phenotypes 110

Gene Interaction with Epistasis 111

CONNECTING CONCEPTS Interpreting Ratios Produced by Gene Interaction 115

> Complementation: Determining Whether Mutations Are at the Same Locus or at Different Loci 117

The Complex Genetics of Coat Color in Dogs 117

5.3 Sex Influences the Inheritance and Expression of Genes in a Variety of Ways 119

Sex-Influenced and Sex-Limited Characteristics 119
Cytoplasmic Inheritance 121
Genetic Maternal Effect 123

Genomic Imprinting 124

5.4 Anticipation Is the Stronger or Earlier Expression of Traits in Succeeding Generations 126

5.5 The Expression of a Genotype May Be
Affected by Environmental Effects 126
Environmental Effects on the Phenotype 127
The Inheritance of Continuous Characteristics 127

Chapter 6 Pedigree Analysis, Applications, and Genetic Testing 139

The Mystery of Missing Fingerprints 139

- 6.1 The Study of Genetics in Humans Is Constrained by Special Features of Human Biology and Culture 140
- 6.2 Geneticists Often Use Pedigrees to Study the Inheritance of Characteristics in Humans 141

Symbols Used in Pedigrees 141
Analysis of Pedigrees 141
Autosomal Recessive Traits 142
Autosomal Dominant Traits 143
X-Linked Recessive Traits 143
X-Linked Dominant Traits 145
Y-Linked Traits 146

6.3 Studying Twins and Adoptions Can Help Assess the Importance of Genes and Environment 147

> Types of Twins 147 Concordance in Twins 148 A Twin Study of Asthma 149 Adoption Studies 150

6.4 Genetic Counseling and Genetic Testing Provide Information to Those Concerned about Genetic Diseases and Traits 150

Genetic Counseling 151
Genetic Testing 152
Interpreting Genetic Tests 156
Direct-to-Consumer Genetic Testing 156
Genetic Discrimination and Privacy 156

Chapter 7 Linkage, Recombination, and Eukaryotic Gene Mapping 165

Linked Genes and Bald Heads 165

- 7.1 Linked Genes Do Not Assort Independently 166
- 7.2 Linked Genes Segregate Together and Crossing Over Produces Recombination Between Them 167

Notation for Crosses with Linkage 168
Complete Linkage Compared with Independent
Assortment 168
Crossing Over with Linked Genes 170
Calculating Recombination Frequency 171
Coupling and Repulsion 172

CONNECTING CONCEPTS Relating Independent Assortment, Linkage, and Crossing Over 173

Evidence for the Physical Basis of Recombination 174 Predicting the Outcomes of Crosses with Linked Genes 175 Testing for Independent Assortment 176 Gene Mapping with Recombination Frequencies 178 Constructing a Genetic Map with the Use of Two-Point Testcrosses 179

7.3 A Three-Point Testcross Can Be Used to Map Three Linked Genes 180

Constructing a Genetic Map with the Three-Point Testcross 181

CONNECTING CONCEPTS Stepping Through the Three-Point Cross 186

Effect of Multiple Crossovers 188

Mapping Human Genes 189

Mapping with Molecular Markers 190

Genes Can Be Located with Genomewide

Association Studies 191

7.4 Physical-Mapping Methods Are Used to Determine the Physical Positions of Genes on Particular Chromosomes 192

Somatic-Cell Hybridization 192
Deletions Mapping 194
Physical Chromosome Mapping Through
Molecular Analysis 195

7.5 Recombination Rates Exhibit Extensive Variation 195

Chapter 8 Chromosome Variation 209

Building a Better Banana 209

Mutations 211

8.1 Chromosome Mutations Include Rearrangements, Aneuploids, and Polyploids 210 Chromosome Morphology 210 Types of Chromosome

8.2 Chromosome Rearrangements Alter Chromosome Structure 212

Duplications 212
Deletions 214
Inversions 216
Translocations 219
Fragile Sites 221
Copy-Number Variations 222

8.3 Aneuploidy Is an Increase or Decrease in the Number of Individual Chromosomes 222

Types of Aneuploidy 222 Effects of Aneuploidy 223 Aneuploidy in Humans 224 Uniparental Disomy 227 Mosaicism 228

8.4 Polyploidy Is the Presence of More than Two Sets of Chromosomes 228

> Autopolyploidy 228 Allopolyploidy 229 The Significance of Polyploidy 232

Chapter 9 Bacterial and Viral Genetic Systems 241

Life in a Bacterial World 241

9.1 Genetic Analysis of Bacteria Requires Special Methods 242

Bacterial Diversity 242
Techniques for the Study of Bacteria 243
The Bacterial Genome 244
Plasmids 245

 Bacteria Exchange Genes Through Conjugation, Transformation, and Transduction 247

Conjugation 247
Natural Gene Transfer and Antibiotic
Resistance 254
Transformation in Bacteria 254
Bacterial Genome Sequences 256
Horizontal Gene Transfer 256

9.3 Viruses Are Simple Replicating Systems Amenable to Genetic Analysis 257

Techniques for the Study of Bacteriophages 257 Transduction: Using Phages to Map Bacterial Genes 258

CONNECTING CONCEPTS Three Methods for Mapping Bacterial Genes 261

Gene Mapping in Phages 261
Fine-Structure Analysis of Bacteriophage
Genes 263
RNA Viruses 265
Human Immunodeficiency Virus and AIDS 267
Influenza 268

Chapter 10 DNA: The Chemical Nature of the Gene 277

Arctic Treks and Ancient DNA 277

- 10.1 Genetic Material Possesses Several Key Characteristics 278
- 10.2 All Genetic Information Is Encoded in the Structure of DNA or RNA 278

 Early Studies of DNA 278

 DNA As the Source of Genetic Information 280

 Watson and Crick's Discovery of the Three-Dimensional Structure of DNA 283
- 10.3 DNA Consists of Two Complementary and Antiparallel Nucleotide Strands That Form a Double Helix 286

The Primary Structure of DNA 286 Secondary Structures of DNA 288

RNA As Genetic Material 285

CONNECTING CONCEPTS Genetic Implications of DNA Structure 290

10.4 Special Structures Can Form in DNA and RNA 291

Chapter 11 Chromosome Structure and Organelle DNA 299

Telomeres and Childhood Adversity 299

11.1 Large Amounts of DNA Are Packed into a Cell 300

Supercoiling 300
The Bacterial Chromosome 301
Eukaryotic Chromosomes 302
Changes in Chromatin Structure 304

11.2 Eukaryotic Chromosomes Possess Centromeres and Telomeres 306

> Centromere Structure 306 Telomere Structure 307

11.3 Eukaryotic DNA Contains Several Classes of Sequence Variation 308

The Denaturation and Renaturation of DNA 308

Types of DNA Sequences in Eukaryotes 308

11.4 Organelle DNA Has Unique Characteristics 309

> Mitochondrion and Chloroplast Structure 309 The Endosymbiotic Theory 310 Uniparental Inheritance of Organelle-Encoded Traits 311

The Mitochondrial Genome 314
The Evolution of Mitochondrial DNA 316
Damage to Mitochondrial DNA Is Associated with
Aging 316

The Chloroplast Genome 317
Through Evolutionary Time, Genetic Information
Has Moved Between Nuclear, Mitochondrial, and
Chloroplast Genomes 318

Chapter 12 DNA Replication and Recombination 325

Topoisomerase, Replication, and Cancer 325

- 12.1 Genetic Information Must Be Accurately Copied Every Time a Cell Divides 326
- 12.2 All DNA Replication Takes Place in a Semiconservative Manner 326 Meselson and Stahl's Experiment 327

Modes of Replication 329
Requirements of Replication 332
Direction of Replication 332

CONNECTING CONCEPTS The Direction of Synthesis in Different Models of Replication 334

12.3 Bacterial Replication Requires a Large Number of Enzymes and Proteins 334

> Initiation 334 Unwinding 334 Elongation 336 Termination 339

The Fidelity of DNA Replication 339

CONNECTING CONCEPTS The Basic Rules of Replication 340

12.4 Eukaryotic DNA Replication Is Similar to Bacterial Replication but Differs in Several Aspects 340

Eukaryotic Origins 340

The Licensing of DNA Replication 341

Unwinding 341

Eukaryotic DNA Polymerases 341

Nucleosome Assembly 342

The Location of Replication Within the

Nucleus 343

DNA Synthesis and the Cell Cycle 343

Replication at the Ends of

Chromosomes 344

Replication in Archaea 346

12.5 Recombination Takes Place Through the Breakage, Alignment, and Repair of DNA Strands 346

Models of Recombination 347

Enzymes Required for Recombination 348

Gene Conversion 349

Chapter 13 Transcription 357

Death Cap Poisoning 357

13.1 RNA, Consisting of a Single Strand of Ribonucleotides, Participates in a Variety of Cellular Functions 358

An Early RNA World 358

The Structure of RNA 358

Classes of RNA 359

13.2 Transcription Is the Synthesis of an RNA Molecule from a DNA Template 360

The Template 361

The Substrate for Transcription 363

The Transcription Apparatus 363

13.3 Bacterial Transcription Consists of Initiation, Elongation, and Termination 365

Initiation 365

Elongation 367

Termination 368

CONNECTING CONCEPTS The Basic Rules of Transcription 369

13.4 Eukaryotic Transcription Is Similar to Bacterial Transcription but Has Some Important Differences 370

Transcription and Nucleosome Structure 370 Promoters 370

Initiation 371 Elongation 373

Termination 373

13.5 Transcription in Archaea Is More Similar to Transcription in Eukaryotes Than to Transcription in Eubacteria 374

Chapter 14 RNA Molecules and RNA Processing 383

A Royal Disease 383

14.1 Many Genes Have Complex Structures 384

Gene Organization 384

Introns 385

The Concept of the Gene Revisited 387

14.2 Messenger RNAs, Which Encode the Amino Acid Sequences of Proteins, Are Modified after Transcription in Eukaryotes 387

The Structure of Messenger RNA 387

Pre-mRNA Processing 388

The Addition of the 5' Cap 388

The Addition of the Poly(A) Tail 389

RNA Splicing 390

Alternative Processing Pathways 393

RNA Editing 395

CONNECTING CONCEPTS Eukaryotic Gene Structure and Pre-mRNA Processing 396

14.3 Transfer RNAs, Which Attach to Amino Acids, Are Modified after Transcription in Bacterial and Eukaryotic Cells 397

The Structure of Transfer RNA 398 Transfer RNA Gene Structure and Processing 399

14.4 Ribosomal RNA, a Component of the Ribosome, Is Also Processed after Transcription 400

The Structure of the Ribosome 400 Ribosomal RNA Gene Structure and Processing 401

14.5 Small RNA Molecules Participate in a Variety of Functions 402

RNA Interference 402

Small Interfering and Micro RNAs 403

Piwi-Interacting RNAs 404

CRISPR RNA 404

14.6 Long Noncoding RNAs Regulate Gene Expression 405

Chapter 15 The Genetic Code and Translation 411

Hutterites, Ribosomes, and Bowen–Conradi Syndrome 411

15.1 Many Genes Encode Proteins 412

The One Gene, One Enzyme Hypothesis 412
The Structure and Function of Proteins 415

The Structure and Function of Froteins 41.

15.2 The Genetic Code Determines How the Nucleotide Sequence Specifies the Amino Acid Sequence of a Protein 417

Breaking the Genetic Code 418

The Degeneracy of the Code 420

The Reading Frame and Initiation Codons 421

Termination Codons 422

The Universality of the Code 422

CONNECTING CONCEPTS Characteristics of the Genetic Code 422

15.3 Amino Acids Are Assembled into a Protein

Through Translation 422

The Binding of Amino Acids to Transfer RNAs 423

The Initiation of Translation 424

Elongation 426

Termination 427

CONNECTING CONCEPTS A Comparison of Bacterial and Eukaryotic Translation 430

15.4 Additional Properties of RNA and Ribosomes Affect Protein Synthesis 430

The Three-Dimensional Structure of the

Ribosome 430

Polyribosomes 431

Messenger RNA Surveillance 431

Folding and Posttranslational Modifications of

Proteins 433

Translation and Antibiotics 433

Chapter 16 Control of Gene Expression in Bacteria 443

Operons and the Noisy Cell 443

16.1 The Regulation of Gene Expression Is Critical for All Organisms 444

Genes and Regulatory Elements 445 Levels of Gene Regulation 445

DNA-Binding Proteins 446

16.2 Operons Control Transcription in Bacterial Cells 447

Operon Structure 447

Negative and Positive Control: Inducible and Repressible Operons 448 The *lac* Operon of *E. coli* 450

lac Mutations 453

Positive Control and Catabolite Repression 457

The *trp* Operon of *E. coli* **458** Bacterial Enhancers **460**

16.3 Some Operons Regulate Transcription
Through Attenuation, the Premature

Termination of Transcription 460 Attenuation in the *trp* Operon of *E. coli* **460**

Why Does Attenuation Take Place in the *trp* Operon? **464**

16.4 RNA Molecules Control the Expression of Some Bacterial Genes 464

Antisense RNA 464

Riboswitches 464

RNA-Mediated Repression Through

Ribozymes 466

Chapter 17 Control of Gene Expression in Eukaryotes 473

Genetic Differences That Make Us Human 473

17.1 Eukaryotic Cells and Bacteria Have Many Features of Gene Regulation in Common, but They Differ in Several Important Ways 474

17.2 Changes in Chromatin Structure Affect the Expression of Genes 474

DNase I Hypersensitivity 474 Chromatin Remodeling 475 Histone Modification 475

DNA Methylation 478

17.3 The Initiation of Transcription Is Regulated by Transcription Factors and Transcriptional Regulator Proteins 479

Transcriptional Activators and Coactivators 479

Transcriptional Repressors 481

Enhancers and Insulators 481

Regulation of Transcriptional Stalling and

Elongation 482

Coordinated Gene Regulation 482

17.4 Some Genes Are Regulated by RNA
Processing and Degradation 483

Gene Regulation Through RNA Splicing 483
The Degradation of RNA 484

17.5 RNA Interference Is an Important Mechanism of Gene Regulation 485

Small Interfering RNAs and MicroRNAs 485

Mechanisms of Gene Regulation by RNA Interference 486 The Control of Development by RNA Interference 487

17.6 Some Genes Are Regulated by Processes That Affect Translation or by Modifications of Proteins 487

CONNECTING CONCEPTS A Comparison of Bacterial and **Eukaryotic Gene Control 488**

Chapter 18 Gene Mutations and DNA Repair 493

A Fly Without a Heart 493

18.1 Mutations Are Inherited Alterations in the DNA Sequence 494

The Importance of Mutations 494 Categories of Mutations 494 Types of Gene Mutations 495 Phenotypic Effects of Mutations 497 Suppressor Mutations 498 Mutation Rates 502

18.2 Mutations Are Potentially Caused by a Number of Different Factors 503

Spontaneous Replication Errors 503 Spontaneous Chemical Changes 504 Chemically Induced Mutations 506 Radiation 508

18.3 Mutations Are the Focus of Intense Study by Geneticists 509

Detecting Mutations with the Ames Test 509 Radiation Exposure in Humans 510

18.4 Transposable Elements Cause Mutations 511

General Characteristics of Transposable Elements 511 Transposition 512 The Mutagenic Effects of Transposition 513 Transposable Elements in Bacteria 514

CONNECTING CONCEPTS Types of Transposable Elements 519

Transposable Elements Have Played an Important Role in Genome Evolution 520

Transposable Elements in Eukaryotes 515

18.5 A Number of Pathways Repair Changes in **DNA 520**

Mismatch Repair 520 Direct Repair 522 Base-Excision Repair 522 Nucleotide-Excision Repair 523

CONNECTING CONCEPTS The Basic Pathway of DNA Repair 524

Repair of Double-Strand Breaks 524 Translesion DNA Polymerases 524 Genetic Diseases and Faulty DNA Repair 525

Chapter 19 Molecular Genetic Analysis and Biotechnology 535

Helping the Blind to See 535

19.1 Techniques of Molecular Genetics Have Revolutionized Biology 536

The Molecular Genetics Revolution 536 Working at the Molecular Level 536

19.2 Molecular Techniques Are Used to Isolate,

Recombine, and Amplify Genes 537 Cutting and Joining DNA Fragments 537 Viewing DNA Fragments 539 Locating DNA Fragments with Southern Blotting and Probes 540 Cloning Genes 541 Application: The Genetic Engineering of Plants with Pesticides 545 Amplifying DNA Fragments with the Polymerase

19.3 Molecular Techniques Can Be Used to Find Genes of Interest 549

Chain Reaction 546

Gene Libraries 549 In Situ Hybridization 552 Positional Cloning 552 Application: Isolating the Gene for Cystic Fibrosis 553

19.4 DNA Sequences Can Be Determined and Analyzed 555

DNA Sequencing 556 Next-Generation Sequencing Technologies 559 DNA Fingerprinting 561 Application: Identifying People Who Died in the Collapse of the World Trade Center 562

Restriction Fragment Length Polymorphisms 555

19.5 Molecular Techniques Are Increasingly Used to Analyze Gene Function 563

Forward and Reverse Genetics 563 Creating Random Mutations 564 Site-Directed Mutagenesis 564 Transgenic Animals 565 Knockout Mice 566 Silencing Genes with RNAi 567

Application: Using RNAi to Treat Human Disease 568

	Biotechnology Harnesses the Power of
	Molecular Genetics 569

Pharmaceutical Products 569

Specialized Bacteria 569 Agricultural Products 569

Genetic Testing 570

Gene Therapy 571

Chapter 20 Genomics and Proteomics 579

Decoding the Waggle Dance: The Genome of the Honeybee 579

20.1 Structural Genomics Determines the DNA Sequences of Entire Genomes 580

Genetic Maps 580

Physical Maps 581

Sequencing an Entire Genome 582

The Human Genome Project 583

Single-Nucleotide Polymorphisms 587 Copy-Number Variations 588

Sequence-Tagged Sites and Expressed-Sequence

Tags 589

Bioinformatics 589

Metagenomics 590

Synthetic Biology 591

20.2 Functional Genomics Determines the Function of Genes by Using Genomic-Based Approaches 591

Predicting Function from Sequence 591 Gene Expression and Microarrays 592

Gene Expression and Reporter Sequences 595

Genome-Wide Mutagenesis 595

20.3 Comparative Genomics Studies How Genomes Evolve 596

Prokaryotic Genomes 596

Eukaryotic Genomes 598

Comparative Drosophila Genomics 601

The Human Genome 601

20.4 Proteomics Analyzes the Complete Set of Proteins Found in a Cell 603

Determination of Cellular Proteins 603

Affinity Capture 604

Protein Microarrays 604

Structural Proteomics 605

Chapter 21 Epigenetics 613

How Your Grandfather's Diet Could Affect Your Health 613

21.1 What Is Epigenetics? 614

21.2 Several Molecular Processes Lead to Epigenetic Changes 615

DNA Methylation 615

Histone Modifications 617

Epigenetic Effects by RNA Molecules 618

21.3 Epigenetic Processes Produce a Diverse Set of Effects 619

Paramutation 619

Behavioral Epigenetics 621

Epigenetic Effects of Environmental Chemicals 623

Transgenerational Epigenetic Effects on Metabolism 623

Epigenetic Effects in Monozygotic Twins 623

X Inactivation 623

Epigenetic Changes Associated with Cell

Differentiation 625

Genomic Imprinting 626

21.4 The Epigenome 627

Chapter 22 Developmental Genetics and Immunogenetics 633

The Origin of Spineless Sticklebacks 633

22.1 Development Takes Place Through Cell Determination 634

Cloning Experiments on Plants 635

Cloning Experiments on Animals 635

22.2 Pattern Formation in *Drosophila* Serves As a Model for the Genetic Control of Development 636

The Development of the Fruit Fly 636

Egg-Polarity Genes 637

Segmentation Genes 640

Homeotic Genes in Drosophila 640

Homeobox Genes in Other Organisms 642

CONNECTING CONCEPTS The Control Of Development 643

Epigenetic Changes in Development 643

22.3 Genes Control the Development of Flowers in Plants 644

Flower Anatomy 644

Genetic Control of Flower Development 644

CONNECTING CONCEPTS Comparison of Development in Drosophila and Flowers 646

22.4 Programmed Cell Death Is an Integral Part of Development 646

22.5 The Study of Development Reveals Patterns and Processes of Evolution 647

22.6 The Development of Immunity Is Through Genetic Rearrangement 649

The Organization of the Immune System 650 Immunoglobulin Structure 651 The Generation of Antibody Diversity 652 T-Cell-Receptor Diversity 653 Major Histocompatibility Complex Genes 654 Genes and Organ Transplants 654

Chapter 23 Cancer Genetics 661

Palladin and the Spread of Cancer 661

23.1 Cancer Is a Group of Diseases Characterized by Cell Proliferation 662

Tumor Formation 662

Cancer As a Genetic Disease 663

The Role of Environmental Factors in Cancer 665

23.2 Mutations in a Number of Different Types of Genes Contribute to Cancer 666

Oncogenes and Tumor-Suppressor Genes 666 Mutations in Genes That Control the Cycle of Cell Division 668

DNA-Repair Genes 672

Genes That Regulate Telomerase 672 Genes That Promote Vascularization and the Spread

of Tumors 672

of Tumors 672

MicroRNAs and Cancer 673

Cancer Genome Projects 674

23.3 Epigenetic Changes Are Often Associated with Cancer 674

- 23.4 Colorectal Cancer Arises Through the Sequential Mutation of a Number of Genes 675
- 23.5 Changes in Chromosome Number and Structure Are Often Associated with Cancer 676
- 23.6 Viruses Are Associated with Some Cancers 678

Chapter 24 Quantitative Genetics 683

Corn Oil and Quantitative Genetics 683

24.1 Quantitative Characteristics Vary
Continuously and Many Are Influenced by
Alleles at Multiple Loci 684

The Relation Between Genotype and Phenotype 684

Types of Quantitative Characteristics 686 Polygenic Inheritance 686 Kernel Color in Wheat 687 Determining Gene Number for a Polygenic Characteristic 688

24.2 Statistical Methods Are Required for Analyzing Quantitative Characteristics 689

Distributions 689

Samples and Populations 690

The Mean 690

The Variance and Standard Deviation 691

Correlation 692

Regression 693

Applying Statistics to the Study of a Polygenic

Characteristic 695

24.3 Heritability Is Used to Estimate the Proportion of Variation in a Trait That Is Genetic 696

Phenotypic Variance 696
Types of Heritability 698
Calculating Heritability 698

The Limitations of Heritability 700

Locating Genes That Affect Quantitative

Characteristics 702

24.4 Genetically Variable Traits Change in Response to Selection 704

Predicting the Response to Selection 705 Limits to Selection Response 706 Correlated Responses 707

Chapter 25 Population Genetics 715

Genetic Rescue of Bighorn Sheep 715

25.1 Genotypic and Allelic Frequencies Are Used to Describe the Gene Pool of a Population 716 Calculating Genotypic Frequencies 717 Calculating Allelic Frequencies 717

25.2 The Hardy–Weinberg Law Describes the Effect of Reproduction on Genotypic and Allelic Frequencies 719

Genotypic Frequencies at Hardy–Weinberg Equilibrium 719

Closer Examination of the Hardy–Weinberg Law 720 Implications of the Hardy–Weinberg Law 720 Extensions of the Hardy–Weinberg Law 721

Testing for Hardy–Weinberg Proportions 721
Estimating Allelic Frequencies with the

Hardy-Weinberg Law 722

25.3 Nonrandom Mating Affects the Genotypic Frequencies of a Population 723

25.4 Several Evolutionary Forces Potentially Cause Changes in Allelic Frequencies 726

Mutation 726

Migration 727

Genetic Drift 728

Natural Selection 731

CONNECTING CONCEPTS The General Effects of Forces That Change Allelic Frequencies 736

Chapter 26 Evolutionary Genetics 743

Taster Genes in Spitting Apes 743

- 26.1 Evolution Occurs Through Genetic Change Within Populations 744
- 26.2 Many Natural Populations Contain High Levels of Genetic Variation 745

Molecular Variation 745
Protein Variation 746
DNA Sequence Variation 747

26.3 New Species Arise Through the Evolution of Reproductive Isolation 749

The Biological Species Concept 749
Reproductive Isolating Mechanisms 750
Modes of Speciation 751
Genetic Differentiation Associated with
Speciation 755

26.4 The Evolutionary History of a Group of Organisms Can Be Reconstructed by Studying Changes in Homologous Characteristics 756 The Alignment of Homologous Sequences 757

The Alignment of Homologous Sequences 75
The Construction of Phylogenetic Trees 758

26.5 Patterns of Evolution Are Revealed by Molecular Changes 758

Rates of Molecular Evolution 759
The Molecular Clock 760
Evolution Through Changes in Gene Regulation 761
Genome Evolution 762

Reference Guide to Model Genetic Organisms A1

The Fruit Fly Drosophilia melanogaster A2
The Bacterium Escherichia coli A4
The Nematode Worm Caenorhabditis elegans A6
The Plant Arabidopsis thaliana A8
The Mouse Mus musculus A10
The Yeast Saccharomyces cerevisiae A12

Glossary B1

Answers to Selected Questions and Problems C1

Index D1